1、第一章 三角形的证明,八年级下册数学(北师版),14 角平分线,第1课时 角平分线的性质与判定,知识点1:角平分线的性质 1如图,OP平分AOB,PAOA,PBOB,垂足分别为点A,B,下列结论中不一定成立的是( ) APAPB BPO平分APB COAOB DAB垂直平分OP,D,2如图,在ABC中,C90,BE平分ABC,EDAB于点D,若AC3,则AEDE( ) A2 B3 C4 D5,B,3如图,AOCBOC,点P在OC上,PDOA于点D,PEOB于点E,若OD8,OP10,则PE的长为( ) A5 B6 C7 D8,B,4如图,ADBC,ABC的平分线BP与BAD的平分线AP相交于点
2、P,作PEAB于点E,若PE2,则两平行线AD与BC之间的距离为( ) A2 B3 C4 D5,C,5如图,已知BD是ABC的平分线,ABBC,点P在射线BD上,PMAD于点M,PNCD于点N. 求证:PMPN.,证明:BD平分ABC,ABDCBD,又ABCB,BDBD,ABDCBD,ADBCDB,ADPCDP,又PMAD,PNCD,PMPN.,知识点2:角平分线的判定 6如图,已知ABC,求作一点P,使点P到A的两边的距离相等,且PAPB.下列确定P点的方法正确的是( ) AP为A,B两角平分线的交点 BP为A的平分线与AB的垂直平分线的交点 CP为AC,AB两边上的高线的交点 DP为AC,
3、AB两边的垂直平分线的交点,B,7如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:在B的平分线上;在DAC的平分线上;在ECA的平分线上;恰是B,DAC,ECA三个角平分线的交点上述结论中,正确的个数为( ) A4 B3 C2 D1,A,8如图,ABCD,点P到AB,BC,CD的距离相等,则P_,90,9如图,在ABC中,ABC120,C26,DEAB,DFAC,DEDF,则ADC_度,137,10如图,BEAC,CFAB,垂足分别为点E,F,BE,CF相交于点D,BDCD.求证:AD平分BAC.,解:DEEC,DFBF,DFBDEC90,又BDFCDE,BDCD,BDFCDE(
4、AAS),DFDE,又DFAF,DEAE,AD平分BAC.,11如图,OP平分MON,PAON于点A,点Q是射线OM上的一个动点,若PA2,则PQ的最小值为( ) A1 B2 C3 D4,B,B,13如图,已知DBAN于点B,交AE于点O,OCAM于点C,且OBOC,如果OAB25,则ADB_,40,14(导学号:16094018)如图,AOEBOE15,EFOB,ECOB,若EC3,则EF的长为_,6,15在公路l1同侧,l2异侧的两个城镇A,B,如图所示,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,则发射塔C应修建
5、在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置(保留作图痕迹,不要求写出画法),解:如图所示,点C1,C2即为所求,16如图,在四边形ABCD中,ABCB于点B,DCBC于点C,DE平分ADC,且点E为BC的中点,连接AE. (1)求证:AE平分BAD; (2)求AED的度数,解:(1)证明:过点E作EFAD于点F,图略DE平分ADC,ECCD,EFAD,ECEF,又ECEB,EFEB,又EFAD,EBAB,点E在BAD的平分线上,AE平分BAD. (2)AED90.,17(导学号:16094019)在ABC中,D是BC边上的点(不与点B,C重合),连接AD. (1)如图1,当点D是BC边上的中点时,SABDSACD_; (2)如图2,当AD是BAC的平分线时,若ABm,ACn,求SABDSACD的值;(用含m,n的代数式表示) (3)如图3,AD平分BAC,延长AD到点E,使得ADDE,连接BE,如果AC2,AB4,SBDE6,那么SABC_,解:(1)11 (2)如图,过点D作DEAB于点E,DFAC于点F,,