1、1122 三角形的外角【教学目标】1、知识与技能: 使学生初步掌握三角形内角和定理的两个推论,并会应用 。 来源:学优高考网 gkstk2、过程与方法:培养学生总结知识内容,使之条理化,以便加深理解和记忆,养成良好的学习习惯3、情感态度与价值观:培养学生的推理能力,运用几何语言有条理的表达能力。通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。【重点】三角形内角和定理推论的应用【难点】三角形外角的概念真正理解推论,并能灵活运用【课型】 新授课【学习方法】自学与小组合作学习相结合的方法【学习过程】一、目标导入投影 1如图,ABC 的三个
2、内角是什么?它们有什么关系?(是A、B、C ,它们的和是 1800。 )若延长 BC 至 D,则ACD 是什么角?这个角与ABC 的三个内角有什么关系?来源:学优高考网 gkstk二、自主学习(1):1.自学内容:教材第 15 页“思考” 上.2.自学要求:学生理解三角形外角的概念。三、交流展示(1):1:三角形外角的定义:_2:外角的特征有三:(1)顶点在_上(2)一条边是_(3)另一条边是_3、画出一个三角形,并画出它的所有外角。4、下列图中,1、2、3 哪些是ABC 的外角? 321CAB FGED来源:学优高考网1 2BAC DE四、自主学习(2):1.自学内容:课本 15 页思考到
3、15 页第 3 行;2.自学要求:学生理解三角形内角和定理推论五、交流展示(2)来源:学优高考网容易知道,三角形的外角ACD 与相邻的内角ACB 是邻补角,那与另外两个角有怎样的数量关系呢?投影 2如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明ACD 与A、B 的关系吗?CEAB , A= 1,B=2又ACD= 1+2ACD= A+B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。由加数与和的关系你还能知道什么?12CBAED3三角形的一个外角大于与它不相邻的任何一个内角。即 , 。ACDB六、自主学习(3):1.自学内容:课本 15 页例题;2.自
4、学要求:学生能灵活运用三角形内角和定理推论例 如图,1、2、3 是三角形 ABC 的三个外角,它们的和是多少?分析:1 与BAC、2 与ABC 、3 与 ACB 有什么关系?BAC、ABC、ACB 有什么关系?解:1+ BAC=1800,2+ABC=180 0,3+ACB=180 0,1+ BAC+2+ABC+3+ACB=540 0又BAC+ABC+ACB=180 01+ 2+ 3=3600。你能用语言叙述本例的结论吗?三角形外角的和等于 3600。七、交流展示(3)1、课本 15 页练习2、已知:D 是 AB 上一点,E 是 AC 上一点,BE 、CD 相交于 F,A=62,ACD=35,A
5、BE=20求:(1)BDC 度数(2) BFD 度数八、巩固练习:1. 一个三角形的两内角分别 55和 65,它的外角不可能是( )A. 115 B. 120 C. 125 D. 1302. 已知三角形的一个外角小于与它相邻的内角,那么这个三角形是( )A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 以上三种情况都有可能3. 已知,如图,在ABC 中,D 是三角形内一点,求证:BDCBAC 。九、小结1、什么是三角形外角?2、三角形的外角有哪些性质?(1. 三角形的外角与它相邻的内角互补。2. 三角形的一个外角等于和它不相邻的两个内角的和。3. 三角形的一个外角大于任何一个和它不相邻的内角。4. 三角形的外角和等于 360。找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的方法是讲清定义,图形分析,变换位置,思路清晰 )十、布置作业:课本 16 页 2、5、6、8、10。来源:学优高考网 gkstk