1、坐标系及参数方程教材分析与学情分析一、课程内容与教学目标本专题的内容包括:坐标系、曲线的极坐标方程、平面坐标系中几种变换、参数方程。通过本专题的教学,使学生简单了解柱坐标系、球坐标系,掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式;通过从实际问题中抽象出数学问题的过程,使学生体会数学在实际中的应用价值;培养学生探究数学问题的能力和应用意识。 二、学习要求1坐标系:了解极坐标系;会在极坐标系中用极坐标刻画点的位置;会进行极坐标和直角坐标的互化。 了解在球坐标系、柱坐标系中刻画空间中点的位置的方法(本节内容不作要求) 。 2曲线的极坐标方程:了解曲线的极坐标方程的求法;会进行曲线的极坐标方
2、程与直角坐标方程的互化;了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。 3平面坐标系中几种常见变换(本节内容不作要求):了解在平面直角坐标系中的平移变换与伸缩变换。 4参数方程:了解抛物运动轨迹的参数方程及参数的意义。 理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。 会进行曲线的参数方程与普通方程的互化。 三、学情分析1学生已经从初中开始学习坐标系,对坐标系有了较为深刻的认识,教学中我还是侧重让学生理解平面和空间中点的位置都可以用有序数组(坐标)来刻画,在不同坐标系中,这些数所体现的几何含义不同。同一几何图形的方程在不同坐标系中具有
3、不同的形式。因此,选择适当的坐标系可以使表示图形的方程具有更方便的形式。在坐标系的教学中,可以引导学生自己尝试建立坐标系,说明建立坐标系的原则,激励学生的发散思维和创新思维,并通过具体实例说明这样建立坐标系有哪些方便之处 2学习极坐标前学生已经在必修 4 中学习了三角函数的定义,再通过具体例子让学生体会极坐标的多值性,但是在表示点的极坐标时,如无特别要求,通常取 0 ,02。极坐标方程与直角坐标方程的互化,主要是极坐标方程化为直角坐标方程;参数方程与普通方程的互化,主要是参数方程化为普通方程,并注意参数的取值范围。 3求曲线的极坐标方程主要包括:特殊位置的直线(如过极点的直线) 、圆(过极点或圆心在极点的圆) ;求曲线的参数方程主要包括:直线、圆、椭圆和抛物运动轨迹的参数方程。 4在物理中,学生已经学习了平抛运动,由此引入参数方程,使学生了解参数的作用。应注意鼓励学生运用已有的平面向量、三角函数等知识,选择适当的参数建立曲线的参数方程。 5可以组织学生成立兴趣小组,合作研究摆线的性质,收集摆线应用的实例,了解平摆线和圆的渐开线的参数方程。可以应用计算机展现心脏线、螺线、玫瑰线、叶形线、摆线、渐开线等,使学生感受这些曲线的美。四、课时安排第一讲、坐标系(4 课时) 第二讲、参数方程(4 课时)