1、假设检验的基本思想和方法 假设检验的一般步骤 假设检验的两类错误 课堂练习 小结 布置作业,第一节 假设检验,假设检验,参数假设检验,非参数假设检验,这类问题称作假设检验问题 .,总体分布已 知,检验关 于未知参数 的某个假设,总体分布未知时的假设检验问题,在本节中,我们将讨论不同于参数估计的另一类重要的统计推断问题. 这就是根据样本的信息检验关于总体的某个假设是否正确.,一、假设检验的基本思想和方法,让我们先看一个例子.,这一章我们讨论对参数的假设检验 .,生产流水线上罐装可乐不断地封装,然后装箱外运. 怎么知道这批罐装可乐的容量是否合格呢?,把每一罐都打开倒入量杯, 看看容量是否合于标准.
2、,罐装可乐的容量按标准应在 350毫升和360毫升之间.,每隔一定时间,抽查若干罐 .,如每隔1小时,抽查5罐,得5个容量的值X1,X5,根据这些值来判断生产是否正常.,如发现不正常,就应停产,找出原因,排除故障,然后再生产;如没有问题,就继续按规定时间再抽样,以此监督生产,保证质量.,通常的办法是进行抽样检查.,很明显,不能由5罐容量的数据,在把握不大的情况下就判断生产 不正常,因为停产的损失是很大的.,当然也不能总认为正常,有了问题不能及时发现,这也要造成损失.,如何处理这两者的关系,假设检验面对的就是这种矛盾.,在正常生产条件下,由于种种随机因素的影响,每罐可乐的容量应在355毫升上下波
3、动. 这些因素中没有哪一个占有特殊重要的地位. 因此,根据中心极限定理,假定每罐容量服从正态分布是合理的.,现在我们就来讨论这个问题.,罐装可乐的容量按标准应在 350毫升和360毫升之间.,它的对立假设是:,称H0为原假设(或零假设,解消假设);,称H1为备选假设(或对立假设).,H1:,这样,我们可以认为X1,X5是取自正态 总体 的样本,,现在要检验的假设是:,那么,如何判断原假设H0 是否成立呢?,较大、较小是一个相对的概念,合理的界限在何处?应由什么原则来确定?,问题归结为对差异作定量的分析,以确定其性质.,差异可能是由抽样的随机性引起的,称为,“抽样误差”或 随机误差,这种误差反映
4、偶然、非本质的因素所引起的随机 波动.,然而,这种随机性的波动是有一定限度的,如果差异超过了这个限度,则我们就不能用抽样的随机性来解释了.,必须认为这个差异反映了事物的本质差别,即反映了生产已不正常.,问题是,根据所观察到的差异,如何判断它究竟是由于偶然性在起作用,还是生产确实不正常?,即差异是“抽样误差”还是“系统误差”所引起的?,这里需要给出一个量的界限 .,问题是:如何给出这个量的界限?,这里用到人们在实践中普遍采用的一个原则:,小概率事件在一次试验中基本上不会发生 .,现在回到我们前面罐装可乐的例中:,在提出原假设H0后,如何作出接受和拒绝H0的结论呢?,在假设检验中,我们称这个小概率
5、为显著性水平,用 表示.,常取,的选择要根据实际情况而定。,罐装可乐的容量按标准应在350毫升和360毫升之间. 一批可乐出厂前应进行抽样检查,现抽查了n 罐,测得容量为 X1,X2,Xn,问这一批可乐的容量是否合格?,提出假设,选检验统计量, N(0,1),由于 已知,,对给定的显著性水平 , 可以在N(0,1)表中查到分位点的值 ,使,故我们可以取拒绝域为:,W:,如果由样本值算得该统计量的实测值落入区域W,则拒绝H0 ;否则,不能拒绝H0 .,如果H0 是对的,那么衡量差异大小的某个统计量落入区域 W(拒绝域) 是个小概率事件. 如果该统计量的实测值落入W,也就是说, H0 成立下的小概
6、率事件发生了,那么就认为H0不可信而否定它. 否则我们就不能否定H0 (只好接受它).,这里所依据的逻辑是:,不否定H0并不是肯定H0一定对,而只是说差异还不够显著,还没有达到足以否定H0的程度 .,所以假设检验又叫,“显著性检验”,如果显著性水平 取得很小,则拒绝域 也会比较小.,其产生的后果是: H0难于被拒绝.,如果在 很小的情况下H0仍被拒绝了,则说明实际情况很可能与之有显著差异.,基于这个理由,人们常把 时拒绝H0称为是显著的,而把在 时拒绝H0称为是高度显著的.,在上面的例子的叙述中,我们已经初步介绍了假设检验的基本思想和方法 .,下面,我们再结合另一个例子,进一步说明假设检验的一
7、般步骤 .,二、假设检验的一般步骤,例2 某工厂生产的一种螺钉,标准要求长度是32.5毫米. 实际生产的产品,其长度X 假定服从正态分布未知,现从该厂生产的一批产品中抽取6件, 得尺寸数据如下:,32.56, 29.66, 31.64, 30.00, 31.87, 31.03,问这批产品是否合格?,分析:这批产品(螺钉长度)的全体组成问题的总体X. 现在要检验E(X)是否为32.5.,提出原假设和备择假设,第一步:,第二步:,能衡量差异大小且分布已知,第三步:,即“ ”是一个小概率事件 .,小概率事件在一次 试验中基本上不会 发生 .,得否定域 W: |t |4.0322,得否定域 W: |t
8、 |4.0322,故不能拒绝H0 .,第四步:,将样本值代入算出统计量 t 的实测值,| t |=2.9974.0322,没有落入 拒绝域,这并不意味着H0一定对,只是差异还不够显著, 不足以否定H0 .,假设检验会不会犯错误呢?,由于作出结论的依据是下述,小概率原理,小概率事件在一次试验中基本上不会发生 .,三、假设检验的两类错误,如果H0成立,但统计量的实测值落入否定域,从而作出否定H0的结论,那就犯了“以真为假”的错误 .,如果H0不成立,但统计量的实测值未落入否定域,从而没有作出否定H0的结论,即接受了错误的H0,那就犯了“以假为真”的错误 .,请看下表,假设检验的两类错误,P拒绝H0|H0为真= ,P接受H0|H0不真= .,犯两类错误的概率:,显著性水平 为犯第一类错误的概率.,两类错误的概率的关系,两类错误是互相关联的, 当样本容量固定时,一类错误概率的减少导致另一类错误概率的增加.,要同时降低两类错误的概率 或者要在 不变的条件下降低 ,需要增加样本容量.,请看演示,