1、机械原理课 程 设 计课程设计名称: 自动钻床送进机构 学 生 姓 名: 邬志东 学 院: 机械工程学院 专 业 及 班 级 : 09 机 制 一 班 学 号: 099290141073 指 导 教 师 : 侍红岩 目录第一章 设计要求.(1)第二章 功能分解(3)第三章 机构对比选用(4)第四章 机构组合()第五章 传动设计方案设计()第六章 方案的评价参考资料第一章 概述及其设计要求1.1 功能要求自动钻床机能够实现送料、定位、和孔的一体化功能。有皮带传动使钻床主动轴获得旋转运动;驱动力由凸轮输出后,靠摆杆凸轮一一扇形齿轮齿条串联组合机构使钻床主轴获得往复的送进运动。半自动钻床机由送料机构
2、,定位机构,进刀机构以及电动机组成。送料机构将被加工工件推入加工位置并由定位机构使被加工工件可靠固定,最终由进刀机构负责动力头的升降来进行钻孔工作。选择送料机构时要考虑到被加工的构件的形状,送料机构要以直线、间隙、定量地将要加工的构件送入加工台,可用来回往复移动构件走直线轨迹段推构件向前进,用定位机构来定住构件的要被加工的位置,加紧之后再钻,打好孔之后再退刀,退出时可以用送料机构送的构件推出加工台,以此来实现循环加工。1.2 已知数据凸轮逆时针转速 n1=10r/min,扇形齿轮的分度圆直径 d=120mm;摆杆长H2=120mm;凸轮的许用压力角(a1 )=30.(a2 )=701.3 设计
3、要求及任务1. 按钻床的工资要求,自选摆杆从动件规律,自行分配凸轮机构的推,回程运动角和休止角;2. 按给定的许用压力角(a1) 、 (a2)值,确定凸轮回转中心位置,选择凸轮的基圆半径 r0 和从动件滚子半径 rr 值;3. 设计凸轮轮廓曲线(绘制凸轮的理论和实际轮廓曲线)14. 校核最大压力角 a1.3 方案提示要求设计该半自动钻床的送料、定位、及进刀的整体传动系统。其中:1.钻头由动力头驱动,设计者只需考虑动力头的进刀运动(升降)2. 除动力头升降机构外,还需要设计送料机构、定位机构。各机构运动循环要求见下表。3. 可采用凸轮轴的方法分配协调各机构运动。1.4 设计数据及工件尺寸加工工件
4、2第二章 功能分解自动钻床的工作原理是利用转头的旋转和进刀切削掉工件的余料而得到工件尺寸形状。工艺动作过程由送料 定位 钻孔三部分组成。各个机构的运动由同一电机驱动,运动由电动机经过减速装置后分为两路,一路随着传动传动皮带传送动力到定位机构和送料机构,分别带动凸轮做转动控制四杆机构对工件的定位和带动凸轮四杆机构控制推杆做往复直线运动。另一路直接传动到钻头的进退刀机构,控制钻头的进退。基本运动为:推杆的往复直线运动,定位机构的间歇运动和钻头的往复运动。此外,还要满足传动性能要求:1 送料 定位 进刀机构在凸轮轴不同转角时候快慢行程不同。2 各个机构之间的配合相互有序,满足凸轮轴转角对应的性能要求
5、。3第三章 机构选用根据前述设计要求,送料机构应该做往复运动,并且必须保证工作行程中有快进、休止和快退过程。定位机构也有休止、快进、快退过程。进刀机构有快进和慢进、快退和休止过程。此外三个机构之间还要满足随着凸轮轴转角不同完成动作的过程不同且相互配合。这些运动要求不一定完全能够达到,但必须保证三者之间相互满足凸轮不同角度时候配合完好,以及送料机构的往复运动和进刀机构的往复循环及各个机构的间歇运动。变速机构:方案一:选用设计要求的主轴转速为 10r/min。可以考虑利用行星轮进行大比例的降速,然后采用蜗轮变向。方案二:A2 利用定轴轮系传动;传动比 =n 输入/n 输出 ,因为传动比很4大,所以
6、要用多级传动。送料机构的选型:方案一:B1 直接采用凸轮滑块机构,并且在轮同轴的齿轮组合中加入不完全齿轮以满足间歇休止运动要求。方案二:B2 采用凸轮与四杆机构的组合结构实现既有快慢变化的运动又5有休止的间歇运动。方案三:B3 采用一个六杆机构来代替曲柄滑块机构,由于设计的钻床在空间上传动轴之间的距离有点大,故一般四杆机构很难实现这种远距离的运动。再加上用四杆机构在本设计中在尺寸上很小。所以考虑到所设计的机构能否稳定的运行因此优先选用了如下图的六杆机构来实现 。 定位机构选型6方案一:C1 利用四杆机构中死点的积极作用,选取凸轮结合夹紧机构共同作用达到定位机构和间歇定位的要求。方案二:C2 定
7、位系统采用的是一个偏置直动滚子从动件盘型凸轮,因为定位系统要 有间歇,所以就要使用凸轮机构,但如果是平底推杆从动件,则凸轮就会失真,若增加凸轮的基圆半径,那么凸轮机构的结构就会很大,也不求实际,所以就采用一个偏置直动滚子从动件盘型凸轮,它就可以满足实际要求了。7 进刀机构方案一:D1 为了达到输出间歇运动同时能够做到循环往复运动,采用凸轮机构和扇形齿与齿条配合,中间采用连杆带动。先把回转运动动力转化为扇形齿的往复摆动,在通过齿轮传递给齿条,增加一个齿轮的目的是为了使传动更加的平稳可靠。8方案二:D2 采用一个摆动滚子从动件盘行凸轮机构来传递齿轮齿条机构.因为我们用一个摆动滚子从动件盘行凸轮机构
8、来传递齿轮机构,当进刀的时候,凸轮在推程阶段运行,很容易通过机构传递带动齿轮齿条啮合.带动动刀头来完成钻孔,摆杆转动的幅度也是等于齿廓转动的幅度,两个齿轮来传动也具有稳性。9第四章 机构组合上述各机构方案择优形成如下的机械系统运动方案组合。机械系统方案 E1 E2 E3变速机构 A2 A1 A1送料机构 B3 B1 B2定位机构 C1 C2 C1进刀机构 D2 D1 D1方案 1 的设计矩阵为 E3=A1 B2 C1 D1钻床的变速装置采用定轴齿轮变速,由于设计要求传动比=n 输入/n输出 ,非常大,此时再结合蜗轮蜗杆传动可以大幅度降速。机构的送料装置采用由凸轮与四杆机构的组合结构,此组合机构
9、既可以满足设计要求同时相对于其他的满足同样要求的机构又具有尺寸小10和运动可靠的特点。盘形凸轮机构把转动动力输入给四杆机构中的一个杆件从而转化为这个杆件的往复运动,此机构中的四杆机构为双摇杆机构,由此双摇杆机构实现滑块的往复运动。同时设计凸轮尺寸来满足滑块的间歇运动和快慢交替的变速运动。机构的定位机构由凸轮机构结合四杆机构的死点来夹住工件,并按要求设计凸轮的外形尺寸以满足定位机构同样满足间歇运动和休止。机构的进刀机构由轮机构和扇形齿与齿条配合,中间采用连杆带动。先把回转运动动力转化为扇形齿的往复摆动,在通过齿轮传递给齿条,增加两个齿轮的目的是为了使传动更加的平稳可靠。方案 2 的设计矩阵为 E
10、2=A1 B1 C2 D1。自动钻床的变速机构采用行星轮可以实现较大幅度的速度转变,相比单纯的采用齿轮传动,次方法的选用更加经济成本相对较低,而且具有传动效率高,结构简单,传动比大的特点,可满足具有较大传动比的工作要求,占据空间也较小。送料装置如果采用凸轮滑块机构,虽然可以实现滑块的往复运动,但是不能够保证滑块能够实现间歇休止并且配合好其他机构。采用 C2 类型的定位装置可以满足设计要求,但是整个半自动钻床的空间尺寸有限这样的设计务必会占用较大的空间从而使材料的使用增多,浪费了材料。进刀机构采用 D1 时候能够满足设计要求,但是机构构件之间缺乏稳定的传动,对制造出的工件精度很难保证质量。11更
11、具钻床每分钟完成一个工件的钻孔的设计要求,并且选用能够提供间歇运动的机构,以及结合产品结构简单、紧凑、制造方便、低成本等性能指标,选取设计方案 E1/。实际采用的半自动钻床运动方案如下图所示:1 电动机 2 定轴齿轮 3 蜗轮 4 凸轮 5 连杆 6 工件毛坯 7 滑块8 钻头 9 齿轮 10 扇形齿轮 11 弹簧 12 连杆 13 夹具 14 连杆15 凸轮 16 皮带半自动钻床运动简图第五章 传动设计方案设计由设计要求:L1+L2+L3=6+14+6=26mm;又根据机床主轴所走过的距离 S=L1+L2+L3;由 L=角度 *半径 可推出 =26mm/60mm=7812因为 H2=120m
12、m ;所以由扇形和滚子的角度相等得;L=*R=52mm 再根据凸轮所走过的距离 L 等于滚子所走过的 距离。因为凸轮的转速为 10r/min,可得 w=/3s,genju 根据题意得停止 2s,所走过的角度为 2/3.(1)确定凸轮机构的基本尺寸根据题意:初步假设滚子的半径 Rr=10mm,得凸轮的半径 R0=33mm。 其次:选定推杆的运动规律,以保证推杆的运动的平稳性。(2) 求理论阔线凸轮的理论轮廓线的坐标可令 e=0,s0=R0,求得 x=(x+s)sin, y=(r0+s)cos ,式中 s 应分段计算。(3) 停歇 2s,1)推程阶段 01=90S1=h(1/2)-sin(180*
13、1/ 01)/(180)=h2/90-sin(41)/(180) =0,902)远休止阶段 02=90S2=52mm X =0,903)回程阶段 03=60S3=10h3/0352h34 /034+6h35035=0,60 4)近休止阶段 04=12013S5=0 =0,1205)推程段的压力角和回程压力角 =arctan|ds/d/R+s|取计算间隔为 5,将以上各相应式计算理论轮廓线上各点的坐标。在计算时应注意:在推程阶段取 =1,在远休止阶段取=01+2,在回程阶段 =01+02+3,在近休止阶段=01+02+03+4.X1=x-rrcos y1=y-rrsinSin =(dx/d)/
14、2)/()/(daydxCos=-(dy/d)1)推程段 =0,/2dx/d=ds/da sin1+(r0+s)cos1= 2s/ 1-cos4sin1+(r0+s)cos1dy/d =(dsda)cos-(r0+s0)1=2h/1-cos4 cos1-(r0+s)sin12) 远休止段 =0,/2dx/d=(r0+s)cos(+2)dy/d=-(r0+s)sin(+2)3)回程阶段 =0,/3dx/d= ds/da sin(3+)+(r0+s)cos (3+)dy/d=ds/da cos(+3)- (r0+s)sin0(3+)4)近休止阶段 =0,2/314dx/d=(r0+s)cos(4/
15、3+4)dy/d=-(r0+s)sin(4/3+4)凸轮轮廓压力角 =16.397,由于凸轮的最大压力角小于许用角。第六章 方案评价1 运动链的选择选择带传动代替原来的齿轮传动不仅能够满足动力传动的要求,同样可以节省机构占用空间,简化机械的构造,降低制造的费用,减轻机构的重量,有利于降低成本提高机械效率。可以减少各个零件制造误差而形成的运动链的运动累计误差,从而提高零件加工的工艺性和工作可靠性,提高传动精度。因此,在选型的时候有时宁可采用具有较小设计误差但结构简单的近似机构,而不是采用理论上没有误差但结构复杂的机构。此外,为了减少构件的数目还有利于提高系统的刚性。因此此方案中采取了机构简单实际
16、工作轨迹近似的装置代替了理论上完全达到要求而实际设计制造很不方便的机构。2 传动比的分配15运动链的传动比的分配是否合理将直接影响机械系统的结构尺寸。采用涡轮蜗杆结合定轴齿轮结构代替星系结构不仅可以满足大幅度减速的要求,同样可以减少空间的浪费和材料的使用,节约成本。在安排传动比分配的时候运动链逐级减速,可以使得各级中间轴有较高的转速及较小的转矩,从而可以使轴及轴上零件有较小的尺寸,是机构较为紧凑。3 动力源的选择1:对于小功率传动,应在考虑满足性能的需要下,选用结构简单的传动装置,尽可能降低初始费用。2:对大功率传动,应优先考虑传动的效率,节约能源,降低运转费用和维修费用。3:当执行机构要求变速时,若能与动力机调速比相适应,可直接连接或采用定传动比的传动装置;当执行机构要求变速范围大。用动力机调速不能满足机械特性和经济性要求时,则应采用变传动比传动;除执行机构要求连续变速外,尽量采用有级变速。4:执行机构上载荷变化频繁,且可能出现过载,这时应加过载保护装置。5:主,从动轴要求同步时,应采用无滑动的传动装置。6:动装置的选用必须与制造水平相适应,尽可能选用专业厂生产的标准传动装置,加减速器,变速器和无级变速器等。16参考文献:1裘建新编著的机械原理课程设计指导书. 高等教育出版社,2005 2 机械原理孙横。高等教育出版社。2005 年17