收藏 分享(赏)

数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc

上传人:eco 文档编号:4611332 上传时间:2019-01-04 格式:DOC 页数:12 大小:681.16KB
下载 相关 举报
数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc_第1页
第1页 / 共12页
数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc_第2页
第2页 / 共12页
数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc_第3页
第3页 / 共12页
数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc_第4页
第4页 / 共12页
数学山东省滨州市、淄博市2018届高三下学期第一次模拟考试试题(文).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、山东省滨州市、淄博市 2018 届高三下学期第一次模拟考试数学试题(文)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合 ,则 ( )|28,0,1234NxABABA B C D0,13,0,12342.在复平面内,复数 满足 ,则 对应的点位于 ( )ziizA第一象限 B第二象限 C第三象限 D第四象限3.若 ,则 ( )0.430.4,.,logabcA B C Dabacbcba4.一段“三段论”推理是这样的:对于函数 ,如果 ,那么 是函数fx0fx0x的极值点因为函数 满足 ,所以 是函数 的极fx3

2、fx0 3f值点.以上推理中( )A.小前提错误 B.大前提错误 C.推理形式错误 D.结论正确5. 已知某空间几何体的三视图如图所示,则该几何体的体积是( )A B C. D527273746. 已知 是等比数列,若 ,数列 的前 项和为 ,则 ( na163,8a1nanT5)A. B.31 C. D.7316 1587.执行如图所示的程序框图,若输出的 值为 ,则输入的 值为( )S6nA3 B 4 C. 5 D68. 南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术” ,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四

3、约之,为实一为从隅,开平方得积 ”若把以上这段文字写成公式,即现有周长为 的 的面积为( )22214cabS25ABCA B C. D3325429. 已知点 ,点 的坐标满足条件 ,则 的最小值是( ,0Q,Pxy10xyPQ)A B C. 1 D122210. 已知 ,则使 成立的 的取值范围是( )1,03,xf1fxxA B C. D0, 470,3,40,13,4711. 已知直线 过定点 ,线段 是圆 :11RaxyaABC的直径,则 ( )2231xyABCA 5 B 6 C. 7 D812.已知函数 在 处取得最大值,则下列结论中正确的序号为:lnxf0x ; ; ; ; (

4、 )0fx00f012fx012fxA B C. D二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分.13.等差数列 的前 项和为 ,若 ,则 nanS23a14.某校高三年级 3 个学部共有 600 名学生,编号为:001,002,600,从 001 到 300在第一学部,从 301 到 495 在第二学部,496 到 600 在第三学部.采用系统抽样的方法从中抽取 50 名学生进行成绩调查,且随机抽取的号码为 003,则第二学部被抽取的人数为15.已知正四棱锥,其底面边长为 2,侧棱长为 ,则该四棱锥外接球的表面积是316.已知双曲线 的两条渐近线与抛物线 分别交于210,x

5、yab20ypx三点, 为坐标原点若双曲线的离心率为 2, 的面积为 ,OAB、 、 AOB3则 p三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 17. 在 中,角 对边分别为 ,已知 ABC,abc22ABCabc(1)求角 的大小;(2)若 ,求 的面积6,23abABC18.如图,已知四棱锥 的底面 是菱形, , 为PABCD06,BADPO边的中点AD(1)证明:平面 平面 ;POBAD(2)若 ,求四棱锥 的体积23,7,13APABCD19.响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取

6、市民 200 人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过 3 小时,其频数分布表如下:(用时单位:小时)用时分组0,.5.,1,.51.,2,.52.,3频数 10 20 50 60 40 20(1)用样本估计总体,求该市市民每天阅读用时的平均值;(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这 200 人中筛选出男女代表各 3 名,其中有 2 名男代表和 1 名女代表喜欢古典文学现从这 6 名代表中任选 2 名男代表和 2 名女代表参加交流会,求参加交流会的 4 名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率20.已知椭圆

7、 的右焦点为 ,原点为 ,椭圆 的动弦 过焦点 且不2:15xCyFOCABF垂直于坐标轴,弦 的中点为 ,过 且垂直于线段 的直线交射线 于点 ABNONM(1)证明:点 在定直线上;M(2)当 最大时,求 的面积OF21. 设函数 (其中 ) 21exkfxR(1)求函数 的单调区间;(2)当 时,讨论函数 的零点个数0kfx选考题:共 10 分.请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22.【选修 4-4:坐标系与参数方程 】在平面直角坐标系 中,直线 的方程是 ,曲线 的参数方程是xOyl4xC( 为参数) 以坐标原点为极点, 轴的正半轴为极轴建立极坐

8、标系12cosinxy(1)求直线 与曲线 的极坐标方程;lC(2)若射线 与曲线 交于点 ,与直线 交于点 ,求0,4C,OAlB的取值范围OAB23. 【选修 4-5:不等式选讲】已知函数 21fxx(1)解不等式 ;(2)若 ,不等式 对 恒成立,求 的取值范围RbabfxRa【参考答案】一、选择题1-5:ABDBC 6-10: ACABD 11-12:CB二、填空题13. 5 14. 17 15. 16.932三、解答题17.解:(1)由已知 ,得 ,22ABCabc 22cosAabc由余弦定理 ,得 ,22osabc4所以 ,又 ,故 .cos03(2)由(1)知 ,1s,in2A

9、由正弦定理,得 ,所以 或 (舍去)3si12i6bBa6B5从而 ,所以 的面积为 6CAC1sin23SabC18.(1)证明:连接 ,因为底面 是菱形, ,DB0AD所以 是正三角形,B所以 ,因为 为 的中点, ,AOAP所以 ,且 ,所以 平面 ,POB又 平面 ,所以平面 平面 ;DBAD(2)因为 是正三角形,所以 ,23,ABD3OB在 中, ,所以 ,RtPAO7,3A2PO又 ,所以 ,13B22BP所以 ,即 ,09又 ,且 ,所以 平面 ,ADPOADOABCD因为 ,2013sin63BCS所以四棱锥 的体积为 124V19.解:(1)根据阅读用时频数分布列表可求0.

10、50.12.50.60.502.301.652 ;故该市市民每天阅读用时的平均值为 1.65 小时;(2)设参加交流会的男代表为 ,其中 喜欢古典文学,12,Aa12,A则男代表参加交流会的方式有: ,共 3 种;,设选出的女代表为: ,其中 喜欢古典文学,12,Bb则女代表参加市交流会的方式有: ,共 3 种,12,Bb所以参加市交流会代表的组成方式有:121121212121212,BbAabAAabAbaA共 9 种,其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是:共 5 种,所以,喜欢古典文12121212,BbAbAbaA学的男代表多于喜欢古典文学的女代表的概率是 9P20解:

11、(1)显然椭圆 的右焦点 的坐标为 ,2:15xCyF2,0设 所在直线为: ,且 AB0k12,AxyB联立方程组: ,得: ;215ykx22251050kxk其中 ,2212100,kxxk点 的坐标为 所在直线方程为: N22,5ONk15yxk所在的直线方程为: ,FM1yxk联立方程组: ,得 ,215yxk5M故点 在定直线 上;M2(2)由(1)得:由 得点 的坐标为 ,且 ,Mx51,2k2,0F则 ,151,22FOkk,42225104cos 61kMkkAA(当且仅当 不等式取等号) ,422251065635kk215k若 取得最小值时, 最大,此时 ;cosOMFO

12、MF1212,xx;221 6545ABkx;22510245Fk13021MABSF21.解:(1)函数 的定义域为 ,fx,,eex xxf kk当 时,令 ,解得 ,所以 的单调递减区间是 ,单调递0k0ff ,0增区间是 ,,当 时,令 ,解得 或 ,1kfxlnkx0所以 在 和 上单调递增,在 上单调递减,fx,lnk0,l,当 时, , 在 上单调递增,kffx,当 时,令 ,解得 或 ,所以 在 和1lnkfx,0上单调递增,在 上单调递减;ln,k0,lnk(2) ,0f当 时, ,k12f又 在 上单调递增,所以函数 在 上只有一个零点,fx,fx0,在区间 中,因为 ,0

13、221e1kkfxx取 ,于是 ,21xk20fkk又 在 上单调递减,故 在 上也只有一个零点,f,0fx,0所以,函数 在定义域 上有两个零点;fx,当 时, 在单调递增区间 内,只有 k1ex,10f而在区间 内 ,即 在此区间内无零点,0ff所以,函数 在定义域 上只有唯一的零点fx,22.解:(1)由 ,得直线 极坐标方程: ,coslcos4曲线 的参数方程为 ( 为参数) ,消去参数 得曲线 的普通方程为C12cosinxy C,即 ,221x20xy将 代入上式得 ,,cos,iy2cos2in所以曲线 的极坐标方程为 ;C2cosin(2)设 ,则 ,所以12,AB124s,cos,22cosinsi 11iin2444O 因为 ,所以 ,所以 ,032sin24所以 ,故 的取值范围是 121sin44OAB12,23.解:(1) ,3,21,xf原不等式等价于: 或 或 ,123x2x32解得: ,或 ,或 ,1x综上所述,不等式解集是: ;1|3x或(2) 恒成立等价于 ,Rbabfmaxaxabf因为 ,所以 的最大值为 ;2a2时, ; 时, ; 时, ,12x52fx1x52fx5fx所以 ,所以由原不等式恒成立,得: ,解得: 或 mafa4a

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报