收藏 分享(赏)

2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc

上传人:无敌 文档编号:460656 上传时间:2018-04-06 格式:DOC 页数:9 大小:2.77MB
下载 相关 举报
2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc_第1页
第1页 / 共9页
2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc_第2页
第2页 / 共9页
2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc_第3页
第3页 / 共9页
2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc_第4页
第4页 / 共9页
2017学年高中数学人教a版必修4示范教案:第三章第一节两角和与差的正弦、余弦和正切公式(第一课时) word版含解析.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、第三章第一节两角和与差的正弦、余弦和正切公式第一课时本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换变换是数学的重要工具,也是数学学习的主要对象之一在本册第一章,学生接触了同角三角函数公式在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换三角恒等变换位于三角函数与数学变换的结合点上通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用本章内容安排按两条线进行,一条明线是建立公式,学习变换

2、;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和( 差) 角公式,而且还特别关注公式推导过程中体现的数学思想方法例如,在两角差的余弦公式这一关键性问题的解决中体现

3、了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察” “思考” “探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结例如,在旁白中有“倍是描述两个数量之间关系的,2 是 的二倍, 4 是 2 的二倍,这里蕴含着换元的思想 ”等,都是为了加强思想方法而设置的两角和与差的正弦、

4、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点” ,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上教师在教学中,要注意控制好难度因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度本章教学时间约需 8 课时,具体分配如下(仅供参考) :节 次 标 题 课 时3.1.1 两角差的余弦公式 1 课时3.1.2 两角和与差的正弦、余弦、正切公式 2 课时3.1.3 二倍角

5、的正弦、余弦、正切公式 1 课时3.2 简单的三角恒等变换 2 课时本章复习 2 课时作者:仇玉法整 体 设 计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:实际问题中存在研究像 tan(45) 这样的包含两个角的三角函数的需要;实际问题中存在研究像 sin 与 tan(45 )这样的包含两角和的三角函数与 、45单角的三角函数的关系的需要以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程本节首先引导学生对

6、cos()的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出 角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导;方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;结合有关图形,完成运用向量方法推导公式的必要准备;探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完

7、善;补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:要使学生了解公式的由来;使学生认识公式的结构特征,加以记忆;使学生掌握公式的推导和证明;通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题三维目标1通过让学生探索、猜想、发现并推导“两角差的余弦公式” ,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质2通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,

8、自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力3通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法重点难点教学重点:通过探究得到两角差的余弦公式教学难点:探索过程的组织和适当引导课时安排1 课时 教 学 过 程导入新课思路 1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:实际问题中存在研究像 tan(45

9、)这样的包含两个角的三角函数的需要;实际问题中存在研究像sin 与 tan(45 )这样的包含两角和的三角函数与 、45单角的三角函数的关系的需要在此基础上,再一般化而提出本节的研究课题进入新课思路 2.(复 习 导 入 )我 们 在 初 中 时 就 知 道 cos45 , cos30 , 由 此 我 们 能 否 得 到22 32cos15 cos(45 30) ? 这 里 是 不 是 等 于 cos45 cos30呢 ? 教 师 可 让 学 生 验 证 , 经 过 验 证可 知 , 我 们 的 猜 想 是 错 误 的 那 么 究 竟 是 个 什 么 关 系 呢 ? cos( )等 于 什 么

10、 呢 ? 这 时 学 生 急于 知 道 答 案 , 由 此 展 开 新 课 : 我 们 就 一 起 来 探 讨 “两 角 差 的 余 弦 公 式 ” 这 是 全 章 公 式 的 基础 推进新课Error!Error!请学生猜想 cos()?利用前面学过的单位圆上的三角函数线,如何用 、 的三角函数来表示 cos()呢?利用向量的知识,又能如何推导发现 cos()?细心观察 C() 公式的结构,它有哪些特征?其中 、 角的取值范围如何?如何正用、逆用、灵活运用 C( )公式进行求值计算?活动:问题,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到 cos()cos

11、 cos 的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性如 60, 30,则 cos()cos30 ,而32coscos cos60cos30 ,这一反例足以说明 cos( )coscos.1 32让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可问题,既然 cos()coscos,那么 cos()究竟等于什么呢?由于这里涉及的是三角函数的问题,是 这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?如图 1,设角 的终边与单位圆的交点为 P1, POP1,则POx.过点P 作 PM 垂直于 x 轴,垂足为 M,那么 OM 就是角 的余弦

12、线,即 OMcos(),这里就是要用角 、 的正弦线、余弦线来表示 OM.过点 P 作 PA 垂直于 OP1,垂足为 A,过点 A 作 AB 垂直于 x 轴,垂足为 B,过点 P 作 PC 垂直于 AB,垂足为 C.那么,OA 表示cos,AP 表示 sin,并且 PACP 1Ox.于是,OMOBBMOBCPOAcosAPsin cos cos sinsin.所以,cos()coscos sinsin .图 1教师引导学生进一步思考,以上的推理过程中,角 、 是有条件限制的,即、 均为锐角,且 ,如果要说明此结果是否对任意角 、 都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同

13、学们课后动手试一试问题,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图 2,在平面直角坐标系 xOy 内作单位圆 O,以 Ox 为始边作角 、,它们的终边与单位圆 O 的交点分别为 A、B,则 (cos,sin), (cos,sin ),AOB .OA OB 图 2由向量数量积的定义有 | | |cos()cos(),OA OB OA OB 由向量数量积的坐标表示有 (cos,sin)(cos,sin)coscos sinsin ,OA OB 于是,cos()cos cos sinsin.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角 必须符合条件

14、0 ,以上结论才正确,由于 、 都是任意角, 也是任意角,因 此 就 是 研 究 当 是 任 意 角 时 , 以 上 公 式 是 否 正 确 的 问 题 当 是 任 意角 时 , 由 诱 导 公 式 , 总 可 以 找 到 一 个 角 0,2), 使 cos cos( ), 若 0, , 则 cos cos( )若 ,2 ,则 20 ,且 cos(2 )OA OB OA OB cos cos()由此可知,对于任意角 、 都有cos coscos sinsinC 此公式给出了任意角 、 的正弦、余弦值与其差角 的余弦值之间的关系,称为差角的余弦公式,简记为 C( ) 有了公式 C() 以后,我们

15、只要知道cos、cos 、sin、sin 的值,就可以求得 cos() 的值了问题,教师引导学生细心观察公式 C( )的结构特征,让学生自己发现公式左边是“两角差的余弦” ,右边是“这两角的余弦积与正弦积的和” ,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“”右“” 或让学生进行简单填空,如:cos(A B)_,cos( )_等因此,只要知道了sin、cos 、sin 、cos 的值就可以求得 cos() 的值了问题,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧如 c

16、os75cos45sin75sin45cos(7545) cos30 ,32coscos( ) cos( )cossin()sin .讨论结果:略Error!思路 1例 1 利用差角余弦公式求 cos15的值活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角 15,它可以拆分为哪些特殊角的差,如 1545 30或者 15 6045,从而就可以直接套用公式 C() 计算求值教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法对于很快就完成的同学,教师鼓励其换个角度继续探究解:方法一:cos15cos(4530)co

17、s45cos30sin45sin30 .22 32 22 12 6 24方法二:cos15cos(6045)cos60cos45sin60sin45 .12 22 22 32 6 24点评:本题是指定方法求 cos15的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形至于如何拆分,让学生在应用中仔细体会.变式训练1不查表求 sin75,sin15 的值解:sin75cos15 cos(4530)cos45cos30sin45sin30

18、 .22 32 22 12 6 24sin15 .1 cos2151 6 24 2 8 26216 6 24点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法2不查表求值:cos110cos20 sin110sin20.解:原式cos(11020)cos900.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式 C( )的右边的特征,逆用公式便可得到 cos(11020)这就是公式逆用的典例,从而培养了学生思维的灵活性.例 2 已知 sin ,( ,),cos , 是第三象限角,求 cos()的

19、值45 2 513活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求 cos( )的值,必先知道 sin、cos、sin 、cos 的值,然后利用公式 C( )即可求解从已知条件看,还少 cos 与 sin 的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角 、 所在的象限,准确判断它们的三角函数值的符号本例可由学生自己独立完成解:由 sin ,( ,),得45 2cos .1 sin21 452 35又由 cos , 是第三象限角,得513sin .1 cos21 5132 1213所以 cos()cos cossinsin( )(

20、 ) ( ) .35 513 45 1213 3365点评:本题是直接运用公式 C( )求值的基础练习,但必须思考使用公式前应作出的必要准备特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知 sin ,(0,) ,cos , 是第三象限角,求 cos()的值45 513解:当 ,) 时,由 sin ,得 cos ,2 45 1 sin2 1 452 35又由 cos , 是第三象限角,得513sin .1 cos21 5132 1213所以 cos()cos cossinsin( )( ) ( ) .35

21、 513 45 1213 3365当 (0 , )时,由 sin ,得2 45cos ,1 sin21 452 35又由 cos , 是第三象限角,得513sin .1 cos21 5132 1213所以 cos()cos cossinsin ( ) ( ) .35 513 45 1213 6365点评:本题与例 2 的显著的不同点就是角 的范围不同由于 (0,) ,这样 cos 的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角 进行分类讨论,从而培养学生思维的严密性和逻辑的条理性教师强调分类时要不重不漏.思路 2例 1 计算:(1)cos(15);(2)cos15cos105s

22、in15sin105;(3)sinxsin(xy )cosxcos( xy)活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角15,思考它可以拆分为哪些特殊角的差,如1515 30或1545 60,然后套用公式求值即可也可化 cos(15) cos15 再求值让学生细心观察 (2)(3)可知,其形式与公式 C() 的右边一致,从而化为特殊角的余弦函数解:(1)原式cos15 cos(45 30)cos45cos30 sin45sin30 .22 32 22 12 6 24(2)原式cos(15105)cos(90) cos900.(3)原式cosx ( xy) cos(y )cosy.

23、点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础例 2 已知 cos ,cos( ) ,且 、(0 , ),求 cos 的值17 1114 2活动:教师引导学生观察题目中的条件与所求,让学生探究 、 、 之间的关系,也就是寻找已知条件中的角与所求角的关系学生通过探究、讨论不难得到 ()的关系式,然后利用公式 C( )求值即可但还应提醒学生注意由 、 的取值范围求出 的取值范围,这是很关键的一点,从而判断 sin() 的符号进而求出 cos.解:、(0, ), (0 ,)2又cos , cos()

24、 ,17 1114sin ,1 cos2437sin( ) .1 cos2 5314又( ),cos cos( )cossin()sin( ) .1114 17 5314 437 12点评:本题相对于例 1 难度大有提高,但是只要引导适当,学生不难得到 () 的关系式,继而运用公式解决但值得注意的是 的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1求值:cos15sin15.解:原式 ( cos15 sin15) (cos45cos15sin45sin15)222 22 2 cos(4515) cos30 .2 2622已知 sinsin ,cos cos ,求 cos

25、() 的值35 45解:(sinsin) 2( )2,(coscos) 2( )2,35 45以上两式展开两边分别相加,得 22cos()1,cos() .12点评:本题又是公式 C() 的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式 C() 中 coscos 和 sinsin 的值,即可求得 cos()的值,本题培养了学生综合运用三角函数公式解决问题的能力3已知锐角 、 满足 cos ,tan( ) ,求 cos.45 13解: 为锐角,且 cos ,得 sin .45 35又0 ,0 ,2 2 .2 2又tan( ) 0,13cos() .310从而 sin()ta

26、n( )cos() .110cos cos ( )coscos()sinsin( ) ( )45 310 35 110 .91050Error!课本本节练习解答:1(1)cos( )cos cossin sinsin .2 2 2(2)cos(2) cos2cossin2sincos .2. .2103. .153 8344. .27 3512Error!1先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变形用及掌握变角和拆角的思想方法解决问题然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究? (2)利用差角余弦公式方面:对公式

27、结构和功能的认识;三角变换的特点2教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的Error!课本习题 3.1 A 组 2、3、4 、5. 设 计 感 想1本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题猜想探索推导记忆应用” 它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识

28、,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性2纵 观 本 教 案 的 设 计 , 学 生 发 现 推 导 出 公 式 C( )后 就 是 应 用 , 同 时 如 何 训 练 公 式 的正 用 、 逆 用 、 变 形 用 也 是 本 节 的 重 点 难 点 而 学 生 从 探 究 活 动 过 程 中 学 会 了 怎 样 去 发 现 数学 规 律 , 又 发 现 了 怎 样 逆 用 公 式 及 活 用 公 式 , 那 才 是 深 层 的 , 那 才 是 我 们 中 学 数 学 教 育 的最 终 目 的 3教学矛盾的主

29、要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣 备 课 资 料一、当 、 为锐角时, cos()coscos sinsin 的向量证明方法证明:如图 3 所示,在直角坐标系中作单位圆 O,并作角 与,设角 的终边与单位圆交于点 P1, 角的终边与单位圆交于点 P2,则图 3(cos ,sin), (c

30、os( ) ,sin( ),OP1 OP2 与 的夹角为 ,OP1 OP2 | | |cos(),OP1 OP2 OP1 OP2 coscos() sinsin() 11cos( ),cos( )coscos sin sin.二、备用习题1若 ,则 一定不属于的区间是 ( )2 2A(,) B( , ) C(, 0) D(0,)2 2答案:D2不查表求值:(1)sin80cos55cos80cos35;(2)cos80cos20sin100sin380.答案:解:(1)原式sin80sin35cos80cos35cos(80 35)cos45 .22(2)原式cos80cos20sin80si

31、n20cos(8020)cos60 .123已知 sin ,( ,) ,求 cos( )的值15 2 3答案:解:sin ,( ,) ,15 2cos .1 sin21 125 265cos( )coscos sinsin3 3 3 265 12 15 32 .3 26104已知 sin ,( ,),cos ,( , ),求 cos()的值23 2 34 32答案:解:sin ,( ,),23 2cos .1 sin21 49 53cos ,( , ),34 32sin .1 cos21 916 74cos( )coscos sin sin ( ) ( )53 34 23 74 .35 27125已知 sinsinsin0,coscos cos 0,求证:cos() .12答案:证明:sinsinsin 0,sinsinsin. coscos cos 0,coscos cos. 2 2,得sin2cos 2sin 2cos 22coscos 2sin sinsin 2cos 2.2(coscossinsin)1,即 cos( ) .12

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报