收藏 分享(赏)

天津市高中数学(人教a版)必修四《2.5.1平面几何中的向量方法》教案.doc

上传人:无敌 文档编号:455519 上传时间:2018-04-06 格式:DOC 页数:3 大小:84.50KB
下载 相关 举报
天津市高中数学(人教a版)必修四《2.5.1平面几何中的向量方法》教案.doc_第1页
第1页 / 共3页
天津市高中数学(人教a版)必修四《2.5.1平面几何中的向量方法》教案.doc_第2页
第2页 / 共3页
天津市高中数学(人教a版)必修四《2.5.1平面几何中的向量方法》教案.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、教学目的:1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲” ;2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;3.让学生深刻理解向量在处理平面几何问题中的优越性. 教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程:一、复习引入:1. 两个向量的数量积: . cos| ba2. 平面两向量数量积的坐标表示: .21yx3. 向量平行与垂直的判定:.0/121yxba .021yba4. 平面内两点间的距离公式: 2)()(|xA

2、B5. 求模:a2yx 2121)()(ya练习 教材 P.106 练习第 1、2、3 题.;教材 P.107 练习第 1、2 题.例 2. 如图,AD,BE,CF 是ABC 的三条高.求证: AD,BE,CF 相交于一点.例 3. 平行四边形是表示向量加法与减法的几何模型.如图,, ,ADBABC你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?思考 1:如果不用向量方法,你能证明上述结论吗?思考 2:运用向量方法解决平面几何问题可以分哪几个步骤?运用向量方法解决平面几何问题可以分哪几个步骤?BDACFEHABCD“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何

3、元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.例 4如图, ABCD 中,点 E、F 分别是 AD、DC 边的中点,BE、 BF 分别与 AC 交于 R、T 两点,你能发现 AR、RT、TC 之间的关系吗?课堂小结用向量方法解决平面几何的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.课后作业1. 阅读教材 P.109 到 P.111; 2. 习案作业二十五.ABCDEF

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报