收藏 分享(赏)

中考数学知识点总结(完整版) 第一轮.doc

上传人:tkhy51908 文档编号:4553339 上传时间:2019-01-02 格式:DOC 页数:67 大小:2.01MB
下载 相关 举报
中考数学知识点总结(完整版) 第一轮.doc_第1页
第1页 / 共67页
中考数学知识点总结(完整版) 第一轮.doc_第2页
第2页 / 共67页
中考数学知识点总结(完整版) 第一轮.doc_第3页
第3页 / 共67页
中考数学知识点总结(完整版) 第一轮.doc_第4页
第4页 / 共67页
中考数学知识点总结(完整版) 第一轮.doc_第5页
第5页 / 共67页
点击查看更多>>
资源描述

1、中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类: 无 限 不 循 环 小 数负 无 理 数正 无 理 数无 理 数 数有 限 小 数 或 无 限 循 环 小负 分 数正 分 数分 数 负 整 数零正 整 数整 数有 理 数实 数1、有理数:任何一个有理数总可以写成 的形式,其中 p、q 是互质的qp整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如 、 ;234特定结构的不循环无限小数,如 1.101001000100001;特定意义的数,如 、 等。45sin3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。二、实数中的

2、几个概念1、相反数:只有符号不同的两个数叫做互为相反数。(1)实数 a 的相反数是 -a; (2)a 和 b 互为相反数 a+b=02、倒数:(1)实数 a(a0)的倒数是 ;(2)a 和 b 互为倒数 ;11ab(3)注意 0 没有倒数3、绝对值:(1)一个数 a 的绝对值有以下三种情况: 0,aa(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。4、n 次方根(1)平方根,算术平方根:设 a0,称 叫 a 的平方根, 叫 a的算术平方根。(2)

3、正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根。(3)立方根: 叫实数 a 的立方根。3(4)一个正数有一个正的立方根;0 的立方根是 0;一个负数有一个负的立方根。三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于 0;负数小于 0;正数大于一切负数;两个负数绝对值大的反而小。五、实数的运算1、加

4、法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。2、减法:减去一个数等于加上这个数的相反数。3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n 个实数相乘,有一个因数为 0,积就为 0;若 n 个非 0 的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0 除

5、以任何数都等于 0,0 不能做被除数。5、乘方与开方:乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。六、有效数字和科学记数法1、科学记数法:设 N0,则 N= a (其中 1a10,n 为整数) 。n02、有效数字:一个近似数,从左边第一个不是 0 的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。例题:例 1、已

6、知实数 a、b 在数轴上的对应点的位置如图所示,且 。ba化简: 例 2、若 ,比较 a、b、c 的大小。333 )4(,)(,)4( cba例 3、若 互为相反数,求 a+b 的值2与例 4、已知 a 与 b 互为相反数,c 与 d 互为倒数,m 的绝对值是 1,求的值。2md例 5、计算:(1) (2)1941945.08221ee代数部分第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。3、代数式的分类: 无 理 式 分 式 多 项

7、 式单 项 式整 式有 理 式代 数 式二、整式的有关概念及运算1、概念(1)单项式:像 x、7、 ,这种数与字母的积叫做单项式。单y2独一个数或字母也是单项式。单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。(2)多项式:几个单项式的和叫做多项式。多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列

8、。(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“”号,把括号和它前面的“”号去掉,括号里的各项都变号。添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“”号,括到括号里的各项都变号。整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。(2)整式的乘除:幂的运算法则:其中 m、 n 都是正整数同底数幂相乘: ;同底数幂相除: ;a nma

9、幂的乘方: 积的乘方: 。na)( nba)(单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。乘法公式:平方差公式: ;2)(baba完全平方公式: ,

10、222)(ba三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。2、常用的因式分解方法:(1)提取公因式法: )(cbamcba(2)运用公式法:平方差公式: ;完全平方公式:)(222)(baa(3)十字相乘法: )()(2 bxabx(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。(5)运用求根公式法:若 的两个根是 、)0(2cxa1x,则有:2x )(212cbxa3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分

11、解,不行的再用求根公式法。(4)最后考虑用分组分解法。四、分式1、分式定义:形如 的式子叫分式,其中 A、B 是整式,且 B 中含BA有字母。(1)分式无意义:B=0 时,分式无意义; B0 时,分式有意义。(2)分式的值为 0:A=0,B0 时,分式的值等于 0。(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果若是分式,一定要化为最简分式。(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。(6)最简公分母:各分式

12、的分母所有因式的最高次幂的积。(7)有理式:整式和分式统称有理式。2、分式的基本性质:(1) ;(2))0(的 整 式是 MBA)(的 整 式是(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。(3)除:除以一个分式等于乘上它的倒数式。(4)乘方:分式的乘方就是把分子、分母分别乘方。五、二次根式1、二次根式的概念:式子 叫做二次根式。)0(a(1)最简二

13、次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。(3)分母有理化:把分母中的根号化去叫做分母有理化。(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有: 与 ; 与 )adcbdcba2、二次根式的性质:(1) ;(2) ;)0()(2)0(2a(3) (a0,b0) ;(4)ab ,bba3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。(2)二次

14、根式的乘法: (a0,b0) 。a(3)二次根式的除法: ),(b二次根式运算的最终结果如果是根式,要化成最简二次根式。例题:一、因式分解:1、提公因式法:例 1、 )(6)(242xybxa分析:先提公因式,后用平方差公式解:略规律总结 因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。2、十字相乘法:例 2、 (1) ;( 2)36524x 12)(4)(2yx分析:可看成是 和(x+y) 的二次三项式,先用十字相乘法,初步分解。解:略规律总结 应用十字相乘法时,注意某一项可是单项的一字母,也可是某个

15、多项式或整式,有时还需要连续用十字相乘法。3、分组分解法:例 3、 2x分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。解:略规律总结 对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。4、求根公式法:例 4、 52x解:略二、式的运算巧用公式例 5、计算: 22)1()1(baba分析:运用平方差公式因式分解,使分式运算简单化。解:略规律总结 抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。2、化简求值:例 6、先化简,再求值: ,其中 x= )74()53(222 xy

16、xx 1 y = 解:略规律总结 一定要先化到最简再代入求值,注意去括号的法则。3、分式的计算:例 7、化简 )316(25aa分析: 可看成 92解:略规律总结 分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号4、根式计算例 8、已知最简二次根式 和 是同类二次根式,求 b 的12b7值。分析:根据同类二次根式定义可得:2b+1=7b。解:略规律总结 二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。代数部分第三章:方程和方程组基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。2、方程的解:使方程左右两边的值

17、相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。3、解方程:求方程的解或方判断方程无解的过程叫做解方程。4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中 x 是未知数,a、b 是已知数,a0)(2)一玩一次方程的最简形式:ax=b(其中 x 是未知数,a、b 是已知数,a0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为 1。(4)一元一次方程有唯一的一个解。2、一元二次方程(1)一元二次方程的一般形式: (其中 x 是未知02cbxa数,a、b、c

18、 是已知数,a 0 )(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。(4)一元二次方程的根的判别式: acb42当 0 时 方程有两个不相等的实数根;当 =0 时 方程有两个相等的实数根;当 0,即原不等式的解集为 , 解此2a10方程求出 a 的值。解:略规律总结此题先解字母不等式,后着眼已知的解集,探求成立的条件,此种类型题都采用逆向思考法来解。代数部分第六章:函数及其图像知识点:一、平面直角坐标系1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实

19、数对之间建立了一对应的关系。2、不同位置点的坐标的特征:(1)各象限内点的坐标有如下特征:点 P(x, y)在第一象限 x 0,y0;点 P(x, y)在第二象限 x0,y0;点 P(x, y)在第三象限 x0,y0;点 P(x, y)在第四象限 x0,y0。(2)坐标轴上的点有如下特征:点 P(x, y)在 x 轴上 y 为 0,x 为任意实数。点 P(x,y)在 y 轴上 x 为 0,y 为任意实数。3点 P(x, y)坐标的几何意义:(1)点 P(x, y)到 x 轴的距离是| y |;(2)点 P(x, y)到 y 袖的距离是| x |;(3)点 P(x, y)到原点的距离是 2yx4

20、关于坐标轴、原点对称的点的坐标的特征:(1)点 P(a, b)关于 x 轴的对称点是 ;),(1baP(2)点 P(a, b)关于 x 轴的对称点是 ;2(3)点 P(a, b)关于原点的对称点是 ;),(3二、函数的概念1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。2、函数:一般地,设在某一变化过程中有两个变量 x 和 y,如果对于 x 的每一个值,y 都有唯一的值与它对应,那么就说 x 是自变量,y 是x 的函数。(1)自变量取值范围的确是: 解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。解析式是只含有一个自变量的分式的函数,自变量

21、取值范围是使分母不为 0 的实数。解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。(2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。(3)函数的表示方法:解析法;列表法;图像法(4)由函数的解析式作函数的图像,一般步骤是:列表;描点;连线三、几种特殊的函数1、一次函数直线位置与 k,b 的关系:(1)k0 直线向上的方向与 x 轴的正方向所形成的夹角为锐角;(2)k0 直线向上的方向与 x 轴的正方向所形成的夹角为钝角;(3)b0 直线与 y 轴交点在 x 轴的上方;(

22、4)b0 直线过原点;(5)b0 直线与 y 轴交点在 x 轴的下方;2、二次函数抛物线位置与 a,b,c 的关系:(1)a 决定抛物线的开口方向 开 口 向 下开 口 向 上0a(2)c 决定抛物线与 y 轴交点的位置:c0 图像与 y 轴交点在 x 轴上方;c=0 图像过原点;c0 图像与 y 轴交点在 x 轴下方;(3)a,b 决定抛物线对称轴的位置:a,b 同号,对称轴在 y 轴左侧;b0,对称轴是 y 轴; a,b 异号。对称轴在 y 轴右侧;3、反比例函数:4、正比例函数与反比例函数的对照表:例题:例1、正比例函数图象与反比例函数图象都经过点P(m,4) ,已知点P到x轴的距离是到

23、y轴的距离2倍.求点P的坐标.;求正比例函数、反比例函数的解析式。分析:由点 P 到 x 轴的距离是到 y 轴的距离 2 倍可知:2|m|=4,易求出点 P 的坐标,再利用待定系数法可求出这正、反比例函数的解析式。解:略例 2、已知 a,b 是常数,且 y+b 与 x+a 成正比例.求证:y 是 x 的一次函数.分析:应写出 y+b 与 x+a 成正比例的表达式,然后判断所得结果是否符合一次函数定义.证明:由已知,有 y+b=k(x+a),其中 k0.整理,得 y=kx+(kab). 因为 k0 且 kab 是常数,故 y=kx+(kab)是 x 的一次函数式.例 3、填空:如果直线方程 ax

24、+by+c=0 中,a0,b0 且 bc0,则此直线经过第_象限.分析:先把 ax+by+c=0 化为 .因为 a0,b0,所以cx,又 bc0,即 0,故 0.相当于在一次函数,0babcy=kx+l 中,k= 0,l= 0,此直线与 y 轴的交点 (0, )在bcx 轴上方.且此直线的向上方向与 x 轴正方向所成角是钝角,所以此直线过第一、二、四象限.例 4、把反比例函数 y= 与二次函数 y=kx2(k0)画在同一个坐标系k里,正确的是( ).答:选(D).这两个函数式中的 k 的正、负号应相同(图 13110).例 5、画出二次函数 y=x2-6x+7 的图象,根据图象回答下列问题:(

25、1)当 x=-1,1,3 时 y 的值是多少?(2)当 y=2 时,对应的 x 值是多少?(3)当 x3 时,随 x 值的增大 y 的值怎样变化?(4)当 x 的值由 3 增加 1 时,对应的 y 值增加多少?分析:要画出这个二次函数的图象,首先用配方法把 y=x2-6x+7 变形为 y=(x-3) 2-2,确定抛物线的开口方向、对称轴、顶点坐标,然后列表、描点、画图解:图象略例 6、拖拉机开始工作时,油箱有油 45 升,如果每小时耗油 6升(1)求油箱中的余油量 Q(升)与工作时间 t(时)之间的函数关系式;(2)画出函数的图象答:(1)Q=45-6t(2)图象略注意:这是实际问题,图象只能

26、由自变量 t 的取值范围 0t7.5 决定是一条线段,而不是直线代数部分第七章:统计初步知识点:一、总体和样本:在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。二、反映数据集中趋势的特征数1、平均数(1) 的平均数, nxx,32 )(12nxxn(2)加权平均数:如果 n 个数据中, 出现 次, 出现 次,1f2f, 出现 次(这里 ) ,则kxkf ffk21)(12kxn(3)平均数的简化计算:当一组数据 中各数据的数值较大,并且都与常数 an,321接近时,设 的平均数为 则:axax,

27、x。ax2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。一组数据的众数可能不止一个。三、反映数据波动大小的特征数:1、方差:(l) 的方差, nxx,32 xSn2212 )()()( (2)简化计算公式: (2212 xSn为较小的整数时用这个公式要比较方便)nxx,321(3)记 的方差为 ,设 a 为常数,nx,321 2S的方差为 ,则 = 。axaxn,321 2S2注:当 各数据较大而常数 a 较接近时,用该法计算1方差

28、较简便。2、标准差:方差( )的算术平方根叫做标准差(S) 。2注:通常由方差求标准差。四、频率分布1、有关概念(1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在 100 个以内时,通常分成 512 组。(2)频数:每个小组内的数据的个数叫做该组的频数。各个小组的频数之和等于数据总数 n。(3)频率:每个小组的频数与数据总数 n 的比值叫做这一小组的频率,各小组频率之和为 l。(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。(5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布

29、直方图。图中每个小长方形的高等于该组的频率除以组距。每个小长方形的面积等于该组的频率。所有小长方形的面积之和等于各组频率之和等于 1。样本的频率分布反映样本中各数据的个数分别占样本容量 n 的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列领率分布表;(5)绘频率分布直方图。例题:例 1、某养鱼户搞池塘养鱼,放养鳝鱼苗 20000 尾,其成活率为70,

30、随意捞出 10 尾鱼,称得每尾的重量如下(单位:千克)08、09、12、13、08、1l、10、12、08、09根据样本平均数估计这塘鱼的总产量是多少千克?分析:先算出样本的平均数,以样本平均数乘以 20000,再乘以70%。解:略规律总结求平均数有三种方法,即当所给数据比较分散时,一般用平均数的概念来求;著所给数据较大且都在某一数 a 上下波动时,通常采用简化公式;若所给教据重复出现时,通常采用加权平均数公式来计算。例 2、一次科技知识竞赛,两次学生成绩统计如下已经算得两个组的人均分都是 80 分,请根据你所学过的统计知识进一步判断这两个组成绩谁优谁次,并说明理由解:(l)甲组成绩的众数 9

31、0 分,乙组成绩的众数为 70 分,从众数比较看,甲组成绩好些。(2)算得 =172,2甲S256乙所以甲组成绩较乙组波动要小。(3)甲、乙两组成绩的中位数都是 80 分,甲组成绩在中位数以上的有 33 人,乙组成绩在中位数以上的有 26 人,从这一角度看甲组的成绩总体要好。(4)从成绩统计表看,甲组成绩高于 80 分的人数为 20 人,乙组成绩高于 80 分的人数为 24 人,所以,乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多 6 人,从这一角度看,乙组的成绩较好。规律总结明确方差或标准差是衡量一组数据的波动的大小的,恰当选用方差的三个计算公式,应抓住三个公式的特

32、征,根据题中数据的特点选用计算公式。例 3、到从某学校 3600 人中抽出 50 名男生,取得他们的身高(单位cm) ,数据如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167 167 167 166 l66 l66 166 166 165 165 165 163 163 162 161 160 158 1571、计算频率,并画出频率分布直方图2、上指出身高在哪一组内的男学生人数所

33、占的比最大3请估计这些初三男学生身高在 1665cm 以下的约有多少人?解:1、各组频率依次是:0.08,0.22,0.22,0.36,0.122、从频率分布表(或图)中,可见身高在 171.5176.5 组内男学生人数所占的比最大。3、这个地方男学生身高 166.5 侧以下的约为900(人))2.08.(0规律总结要掌握获得一组数据的频率分布的五大步骤,掌握整理数据的步骤和方法。会对数据进行合理的分组。几何部分第一章:线段、角、相交线、平行线知识点:一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸” 。二、直线的性质:经过两点有一条直线,并且只有一条直线,直

34、线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。三、射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。2射线的特征:“向一方无限延伸,它有一个端点。 ”四、线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。2、线段的性质(公理):所有连接两点的线中,线段最短。五、线段的中点: 1、定义如图 1 一 1 中,点 B 把线段 AC 分成两条相等的线段,点 B叫做线段图 11AC 的中点。2、表示法:ABBC点 B 为 AC 的中点或 AB MAC点 B 为 AC 的中点,或 AC2AB,点 B 为 AC 的中点反之

35、也成立点 B 为 AC 的中点,ABBC或点 B 为 AC 的中点, AB= AC21或点 B 为 AC 的中点, AC=2BC六、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。要弄清定义中的两个重点角是由两条射线组成的图形;这两条射线必须有一个公共端点。另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。可以看出在起始位置的射线与终止位置的射线就形成了一个角。2角的平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。表示法有三种:如图 12(1)AOCBOC (2)AOB2AOC 2COB(3)AOCCOB= AOB 1七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 实用文档 > 工作总结

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报