1、【课题研究】 2、1、2 系统抽样【讲师】 讲义编写者:数学教师孟老师一、 【学习目标】1、明确什么是系统抽样以及系统抽样的适用范围;2、会利用系统抽样获取样本.二、 【自学内容和要求及自学过程】某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500 名学生中抽取 50 名进行调查.除了用简单随机抽样获取样本外,你能否设计其它抽样方法?我们按照这样的方法来抽样:首先将这 500 名学生进行编号,然后按照号码顺序以一定的间隔进行抽取.由于 500/50=10,所以抽取的两个相邻号码 之差可以定为 10,即从 110 中随机抽取一个号码,例如抽到的号码是 6,每次增加 10,得到:6,1
2、6,26,36,496.这样我们就得到一个容量为 50 的样本.这种抽样方法是一种系统抽样.阅读教材 58 页内容,回答问题(系统抽样)归纳系统抽样的定义和步骤.系统抽样有什么特点.结论: 一般地,要从容量为 N 的总体中抽取容量为 n 的样本,可将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样.一般地,假设要从容量为 N 的总体中抽取容量为 n 的样本,我们可以按照下列步骤进行系统抽样:先将总体的 N 个个体编号 .有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;确定分段间隔 k,对编号进行分段.当 N/n(n
3、 是样本容量)是整数时,取 k=N/n;在第 1 段用简单随机抽样确定第一个个体编号 l(lk) ;按照一定的规则抽取样本.通常是将 l 加上间隔 k 得到地 2 个个体编号(1+k) ,在加 k 得到第三个个体编号(L+2k) ,依次进行下去,直到获取整个样本.系统抽样的特点是:10当总体容量 N 较大时,采用系统抽样;20将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为 k=N/n;30预先制定的规则指的是:在第一段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.三、 【综合练习与思考探索】练习一:教材 59 页练习 2、3.练习二:为了了解参加某种知识竞赛的 10001 名学生的成绩,应采用什么样的抽样方法较恰当?简述抽样过程.引申:为了了解参加某种知识竞赛的 1003 名的学生的成绩,请用系统抽样抽取一个容量为 50 的样本.(从总体中先随机剔除 3 个样本,可用随机数表法等等).四、 【作业】1、必做题:习题 A 组第 3 题;2、选做题:整理本节所学知识,形成文字到作业本上.