收藏 分享(赏)

不等式技巧与例题1.pdf

上传人:eco 文档编号:4455621 上传时间:2018-12-29 格式:PDF 页数:15 大小:74.51KB
下载 相关 举报
不等式技巧与例题1.pdf_第1页
第1页 / 共15页
不等式技巧与例题1.pdf_第2页
第2页 / 共15页
不等式技巧与例题1.pdf_第3页
第3页 / 共15页
不等式技巧与例题1.pdf_第4页
第4页 / 共15页
不等式技巧与例题1.pdf_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、Mathematical Database Page 1 of 15 INEQUALITIES UNIT 1 CLASSICAL INEQUALITIES 1. Inequality of the Means To motivate our discussion, lets look at several situations. (A) A man drove for 2 hours. In the first hour he travelled 16 km, and in the second hour he travelled 32 km. What is his average spee

2、d for the whole journey? (B) A man drove from City P to City Q at a speed of 16 km/h and returned at 32 km/h. What is his average speed for the whole journey? (C) In the traditional Chinese game mahjong, the value (in order not to encourage gambling we use the term value in place of payoff) of a han

3、d is determined by the number of points of the hand and usually grows in a geometric sequence. For instance, Points 0 1 2 3 4 5 6 Value 4 8 16 32 64 128 256 But in this case the value grows too fast. Some people want to modify it so that the value doubles every 2 points rather than every point. For

4、instance, Points 0 1 2 3 4 5 6 Value 4 x 8 y 16 z 32 What should be x, y and z? Some people tend to simply put 6 x =, 12 y = and 24 z = , but then the numbers in the second row will no longer form a geometric sequence. Can we choose x, y, z so that 4, x, 8, y, 16, z, 32 form a geometric sequence? These questions should be fairly easy. For (A), the average speed is 16 32 24 km/h 2 + = .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报