分享
分享赚钱 收藏 举报 版权申诉 / 31

类型2.1.2椭圆的简单几何性质-(三)直线与椭圆的位置关系.ppt

  • 上传人:weiwoduzun
  • 文档编号:4387364
  • 上传时间:2018-12-26
  • 格式:PPT
  • 页数:31
  • 大小:1.66MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2.1.2椭圆的简单几何性质-(三)直线与椭圆的位置关系.ppt
    资源描述:

    1、2.1.2椭圆的简单几何性质(3),高二数学 选修1-1 第二章 圆锥曲线与方程,直线与椭圆的位置关系,回忆:直线与圆的位置关系,1.位置关系:相交、相切、相离 2.判别方法(代数法)联立直线与圆的方程消元得到二元一次方程组(1)0直线与圆相交有两个公共点;(2)=0 直线与圆相切有且只有一个公共点;(3)0 直线与圆相离无公共点,通法,直线与椭圆的位置关系,种类:,相离(没有交点),相切(一个交点),相交(二个交点),相离(没有交点) 相切(一个交点) 相交(二个交点),直线与椭圆的位置关系的判定,代数方法,1.位置关系:相交、相切、相离 2.判别方法(代数法)联立直线与椭圆的方程消元得到二

    2、元一次方程组(1)0直线与椭圆相交有两个公共点;(2)=0 直线与椭圆相切有且只有一个公共点;(3)0 直线与椭圆相离无公共点,通法,知识点1.直线与椭圆的位置关系,例1:直线y=kx+1与椭圆 恒有公共点, 求m的取值范围。,题型一:直线与椭圆的位置关系,练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,练习2.无论k为何值,直线y=kx+2和曲线 交点情况满足( ) A.没有公共点 B.一个公共点 C.两个公共点 D.有公共点,D,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,思考:最大的距离是

    3、多少?,题型一:直线与椭圆的位置关系,练习:已知直线y=x- 与椭圆x2+4y2=2 ,判断它们的位置关系。,解:联立方程组,消去y,0,因为,所以,方程()有两个根,,那么,相交所得的弦的弦长是多少?,则原方程组有两组解.,- (1),由韦达定理,设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k,弦长公式:,知识点2:弦长公式,可推广到任意二次曲线,例1:已知斜率为1的直线L过椭圆 的右焦点,交椭圆于A,B两点,求弦AB之长,题型二:弦长公式,题型二:弦长公式,例3 :已知椭圆 过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.,解:,韦达定理

    4、斜率,韦达定理法:利用韦达定理及中点坐标公式来构造,题型三:中点弦问题,例 3 已知椭圆 过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.,点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率,点,作差,题型三:中点弦问题,知识点3:中点弦问题,点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率,直线和椭圆相交有关弦的中点问题,常用设而不求的 思想方法,例3已知椭圆 过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.,所以 x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0 从而A ,B在直线x+2y-4=0上 而过A,B

    5、两点的直线有且只有一条,解后反思:中点弦问题求解关键在于充分利用“中点”这一 条件,灵活运用中点坐标公式及韦达定理,,题型三:中点弦问题,例4、如图,已知椭圆 与直线x+y-1=0交 于A、B两点, AB的中点M与椭圆中心连线的 斜率是 ,试求a、b的值。,练习: 1、如果椭圆被 的弦被(4,2)平分,那么这弦所在直线方程为( ) A、x-2y=0 B、x+2y- 4=0 C、2x+3y-12=0 D、x+2y-8=0 2、y=kx+1与椭圆 恰有公共点,则m的范围( )A、(0,1) B、(0,5 ) C、 1,5)(5,+ ) D、(1,+ ) 3、过椭圆 x2+2y2=4 的左焦点作倾斜

    6、角为300的直线,则弦长 |AB|= _ ,D,C,练习: 已知椭圆5x2+9y2=45,椭圆的右焦点为F,(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.,练习: 已知椭圆5x2+9y2=45,椭圆的右焦点为F,(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点椭圆的弦所在的直线方程.,3、弦中点问题的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理; (2)设两端点坐标,代入曲线方程相减可求出弦的斜率。,1、直线与椭圆的三种位置关系及判断方法;,2、弦长的计算方法: 弦长公式:|AB|= = (适用于任何曲线),小 结,解方程组消去其中一元得一元二次型方程, 0 相离,= 0 相切, 0 相交,

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2.1.2椭圆的简单几何性质-(三)直线与椭圆的位置关系.ppt
    链接地址:https://www.docduoduo.com/p-4387364.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开