1、分类计数原理与分步计数原理 习题课,20130402,例2、为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。在某网站设置的信箱中, (1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位均为0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个。这样的密码共有多少个? (3)密码为4到6位,每位均为0到9这10个数字中的一个。这样的密码共有多少个?,例 3. 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?首位数字不为0的号码数是多少?首位数字是0的号码
2、数又是多少?,分析: 按号码位数,从左到右依次设置第一位、第二位、第三 位,第四位、需分为 四步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m2 = 10,第 四步 , m4 = 10. 根据分步记数原理, 共可以设置N = 101010 10 = 104种四位数的号码。,答:首位数字不为0的号码数是N =91010 10 = 9103 种, 首位数字是0的号码数是 N = 11010 10 = 103 种。 由此可以看出, 首位数字不为0的号码数与首位数字是0的号 码数之和等于号码总数。,例6(1)要从甲、乙、丙三名工人中选出两名分别上日班和晚班,有多少种不同的
3、选法?,(2)某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各一人,有多少种不同的选法?,(3)用红、黄、蓝不同颜色的旗各三面,每次升一面、两面、三面在某一旗杆上纵向排列,共可以组成多少种不同的信号?,例7、(1)8张卡片上写着0,1,2,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?,(2)4张卡片的正、反面分别写有0与1、2与3、4与5、6与7,将其中的3张卡片排放在一起,共有多少个不同的三位数?,(3)自然数2520有多少个正约数?,(4)书架上原来并排放着5本不同的书,现要插入三本不同的书,那么不同的插法有多少种?,归 纳 推 理,分 类 讨 论,数学源于生活,数学 用于生活,小结,分类计数原理与分步计数原理,分类计数原理:针对的是“分类”问题,其各种方法互相独立,用其中任何一种方法都可以做完这件事。,分步计数原理:针对的是“分步”问题,各个步骤的方法相互依存,只有各个步骤都完成了才算做完这件事。,都是有关做一件事情的不同方法的种数的问题。,感谢你的指导!再会!,