1、SPSS:多个样本率的卡方检验及两两比较 来自:医咖会 医咖会之前推送过“两个率的比较 (卡方检验)及 Fisher 精确检验的 SPSS 教程”,小伙伴们都掌握了吗?如果不止两个分组,又该如何进行卡方检验以及之后的两两比较呢?来看详细教程吧!1、问题与数据某医生拟探讨药物以外的其他方法是否可降低患者的胆固醇浓度,如增强体育锻炼、减少体重及改善饮食习惯等。该医生招募了 150 位高胆固醇、生活习惯差的受试者, 并将其随机分成 3 组。其中一组给予降胆固醇药物,一组给予饮食干预,另一组给予运动干预。经过 6 个月的试验后,该医生重新测量受试者的胆固醇浓度,分为高和正常两类。该医生收集了受试者接受
2、的干预方法(intervention)和试验结束时胆固醇的风险程度(risk_level)等变量信息,并按照分类汇总整理,部分数据如下:注释:本研究将胆固醇浓度分为“高” 和“正常” 两类,只是为了分析的方便,并不代表临床诊断结果。2、对问题的分析研究者想判断干预后多个分组情况的不同。如本研究中经过降胆固醇药物、饮食和运动干预后,比较各组胆固醇浓度的变化情况。针对这种情况,我们建议使用卡方检验(2C),但需要先满足 5 项假设:假设 1:观测变量是二分类变量,如本研究中试验结束时胆固醇的风险程度变量是二分类变量。假设 2:存在多个分组(2 个),如本研究有 3 个不同的干预组。假设 3:具有相
3、互独立的观测值,如本研究中各位受试者的信息都是独立的,不会相互干扰。假设 4:研究设计必须满足:(a) 样本具有代表性,如本研究在高胆固醇、生活习惯差的人群中随机抽取 150 位受试者;(b) 目的分组,可以是前瞻性的,也可以是回顾性的,如本研究中将受试者随机分成 3 组,分别给予降胆固醇药物、饮食和运动干预。假设 5:样本量足够大,最小的样本量要求为分析中的任一预测频数大于 5。经分析,本研究数据符合假设 1-4,那么应该如何检验假设 5,并进行卡方检验(2C)呢?3、思维导图4、SPSS 操作4.1 数据加权在进行正式操作之前,我们需要先对数据加权,如下:(1) 在主页面点击 DataWe
4、ight Cases弹出下图:(2) 点击 Weight cases by,激活 Frequency Variable 窗口(3) 将 freq 变量放入 Frequency Variable 栏(4) 点击 OK4.2 检验假设 5数据加权之后,我们要判断研究数据是否满足样本量要求,如下:(1) 在主页面点击 AnalyzeDescriptive StatisticsCrosstabs弹出下图:(2) 将变量 intervention 和 risk_level 分别放入 Row(s)栏和 Column(s)栏(3) 点击 Statistics,弹出下图:(4) 点击 Chi-square(5
5、) 点击 ContinueCells(6) 点击 Counts 栏中的 Expected 选项(7) 点击 ContinueOK经上述操作,SPSS 输出预期频数结果如下:该表显示,本研究最小的预测频数是 24.7,大于 5,满足假设 5,具有足够的样本量。Chi-Square Tests 表格也对该结果做出提示,如下标注部分:即在本研究中,没有小于 5 的预测频数,可以直接进行卡方检验(2C)。那么,如果存在预测频数小于 5 的情况,我们应该怎么办呢?一般来说,如果预测频数小于 5,就需要进行 Fisher 精确检验(2C),我们将在后面推送的内容中向大家详细介绍。4.3 卡方检验(2C)
6、的 SPSS 操作(1)弹出下图:(2)(3)(4)(5) 点击 Percentage 栏中的 Column 选项(6)4.4 组间比较(1)弹出下图:(2) 点击 Cells,弹出下图:(3) 点击 z-test 栏中的 Compare column proportions 和 Adjust p-values (Bonferroni method)选项(4)5、结果解释5.1 统计描述在进行卡方检验(2C)的结果分析之前,我们需要先对研究数据有个基本的了解。SPSS 输出结果如下:该表提示,本研究共有 150 位受试者,根据干预方式均分为 3 组。在试验结束时,药物干预组的 50 位受试者中
7、有 16 位胆固醇浓度高,饮食干预组的 50 位受试者中有 28 位胆固醇浓度高,而运动干预组的 50 位受试者中有 30 位胆固醇浓度高,如下标注部分:由此可见,药物干预比饮食或运动干预的疗效更好。同时,该表也提示,药物干预组的 50 位受试者中有 34 位胆固醇浓度下降,饮食干预组的 50 位受试者中有 22 位胆固醇浓度下降,而运动干预组的 50 位受试者中只有 20 位胆固醇浓度下降,如下标注部分:但是,当各组样本量不同时,频数会误导人们对数据的理解。因此,我们推荐使用频率来分析结果,如下标注部分:该表提示,药物干预组的 50 位受试者中 68%胆固醇浓度下降,饮食干预组的 50 位受
8、试者中 44%胆固醇浓度下降,而运动干预组的 50 位受试者中只有 40%胆固醇浓度下降,提示药物干预比饮食和运动干预更有效。但是这种直接的数据比较可能受到抽样误差的影响,可信性不强,我们还需要进行统计学检验。5.2 卡方检验(2C) 结果本研究中任一预测频数均大于 5,所以根据 Chi-Square Tests 表格分析各组的差别。SPSS 输出检验结果如下:卡方检验(2C)结果显示 2=9.175,P = 0.010,说明本研究中各组之间率的差值与0 的差异具有统计学意义,提示药物干预与饮食、运动干预在降低受试者胆固醇浓度的作用上存在不同。如果 P0.05,那么就说明各组之间率的差值与 0 的差异没有统计学意义,即不认为各组之间存在差异。5.3 卡方检验(2C) 中的成对比较分析如果卡方检验(2C)的 P0.05)。6.2 若卡方检验(2C) 的 P0.05本研究招募 150 位高胆固醇、生活习惯差的受试者,随机分组后分别给予药物、饮食和运动干预。试验结束时,药物干预组有 24 位(48%)胆固醇浓度下降,饮食干预组有 22位(44%) 胆固醇浓度下降,而运动干预组有 20 位(40%)胆固醇浓度下降,三组结果的差异没有统计学意义(P=0.620 )。