1、21.2.4 实际问题与一元二次方程教学内容由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题教学目标掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题重难点关键来源:学优高考网1重点:用“倍数关系”建立数学模型2难点与关键:用“倍数关系”建立数学模型教学过程一、复习引入来源:学优高考网(学生活动)问题 1:列一元一次方程解应用题的步骤?审题,设出未知数. 找等量关系. 列方程, 解方程, 答. 二、探索新知来源:学优高考网上面这道题大家都做得很好,
2、这是一种利用一元一次方程的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题来源:学优高考网(学生活动)探究 1: 有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了几个人?来源:学优高考网 gkstk分析: 1 第一轮传染 第二轮传染后 解:设每轮传染中平均一个人传染了 x 个人,则第一轮后共有 人患了流感,第二轮后共有 人患了流感.来源:学优高考网 gkstk列方程得 1+x+x(x+1)=121x2+2x-120=0解方程,得 x1=-12, x2=10根据问题的实际意义,x=10答:每轮传染中平均一个人传染了 10 个人.思考:按照这样的传染速度,三轮传染后有多少人患流感? 来源:gkstk.Com通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?来源:学优高考网四.巩固练习.1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是 91,每个支干长出多少小分支?解:设每个支干长出 x 个小分支, 2.要组织一场篮球联赛, 每两队之间都赛 2 场,计划安排 90 场比赛,应邀请多少个球队参加比赛?来源:gkstk.Com来源:学优高考网