1、,25.2 用列举法求概率(3),复习,当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.,一个因素所包含的可能情况,另一个因素所包含的可能情况,两个因素所组合的所有可能情况,即n,在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.,列表法中表格构造特点:,当一次试验中涉及3个因素或更多的因素时,怎么办?,当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.为了不重不漏地列出所有可能的结果,通常采用“树形图”.,树形图,树形图的画法:,一个试验,第一个因数,第二个,第三个,如一个试验中涉及3个因数,第一个因数中有
2、2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,A,B,1,2,3,1,2,3,a,b,a,b,a,b,a,b,a,b,a,b,则其树形图如图.,n=232=12,例题,例1 同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上; (2) 两枚硬币正面朝上而一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上.,正,反,正,反,正,反,正,反,正,反,正,反,正,反,抛掷硬币试验,解:,由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等., P(A),(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种, P(B),(2)满足两枚硬币正
3、面朝上而一枚硬币反面朝上(记为事件B)的结果有3种,(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种, P(C),第枚,例题,例2.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C. D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.,(2)取出的3个小球上全是辅音字母的概率是多少?,(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?,取球试验,甲,乙,丙,解:,由树形图可以看出,所有可能的结果有12种,它们出现的可能性相等., P(一个元音)=,(1)只有1个元音字母
4、结果有5个, P(两个元音)=,有2个元音字母的结果有4个, P(三个元音)=,全部为元音字母的结果有1个, P(三个辅音)=,(2)全是辅音字母的结果有2个,例题,例3.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用 “石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头” “剪刀”“布”三种手势中的一种,规定“石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石头”. 问一次比赛能淘汰一人的概率是多少?,解:,由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.,由规则可知,一次能淘汰一人的结果应是:“石石剪” “剪剪布” “布布石”三类.,而满足条件(记为事件A)的结果有9
5、种, P(A)=,数学病院,用下图所示的转盘进行“配紫色”游戏,游戏者获胜的概率是多少?,刘华的思考过程如下:,随机转动两个转盘,所有可能出现的结果如下:,你认为她的想法对吗,为什么?,总共有9种结果,每种结果出现的可能性相同,而能够 配成紫色的结果只有一种: (红,蓝),故游戏者获胜的概率为19 。,用树状图或列表法求概率时,各种结果出现的可能性务必相同。,用树状图和列表的方法求概率的前提:,各种结果出现的可能性务必相同.,例如,注意:,想一想,(1) 列表法和树形图法的优点是什么? (2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?,利用树形图或表格可以清晰地表示出某个事件发
6、生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,当然,此时也可以用树形图法;当试验在三步或三步以上时,用树形图法方便.,练习,1. 在6张卡片上分别写有16的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?,(课本P154/练习),2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率:,(1)三辆车全部继续直行;,(2)两辆车向右转,一辆车向左转;,(3)至少有两辆车向左转.,答案:,1.,2. (1),(
7、2),(3),第 一 辆,左,右,左,右,左直右,第 二 辆,第 三 辆,直,直,左,右,直,左,右,直,左直右,左直右,左直右,左直右,左直右,左直右,左直右,左直右,共有27种行驶方向,解:画树形图如下:,练习,3. 用数字1、2、3,组成三位数,求其中恰有2个相同的数字的概率.,解:,由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等.,其中恰有2个数字相同的结果有18个., P(恰有两个数字相同)=,4.把3个不同的球任意投入3个不同的盒子内(每盒装球不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率.,练习,解:,由树形图可以看出,所有可能的结果有27种,它们
8、出现的可能性相等., P(无空盒)=,(1)无空盒的结果有6个,(2)恰有一个空盒的结果有18个, P(恰有一个空盒)=,1.在6张卡片上分别写有16的整数,随机地抽取一张后放回,在随机地抽取一张。那么第二次取出的数字能够整除第一取出的数字的概率是多少?,试一试:一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同 (1)求这个家庭的3个孩子都是男孩的概率;(2)求这个家庭有2个男孩和1个女孩的概率;(3)求这个家庭至少有一个男孩的概率,解:,(1)这个家庭的3个孩子都是男孩的概率为1/8;,(2)这个家庭有2个男孩和1个女孩的概率为3/8;,(3)这个家庭至少有一个男孩的概率为7/8.,再见,