收藏 分享(赏)

工程流体力学课后习题答案(杜广生).pdf

上传人:weiwoduzun 文档编号:4276974 上传时间:2018-12-20 格式:PDF 页数:44 大小:646.67KB
下载 相关 举报
工程流体力学课后习题答案(杜广生).pdf_第1页
第1页 / 共44页
工程流体力学课后习题答案(杜广生).pdf_第2页
第2页 / 共44页
工程流体力学课后习题答案(杜广生).pdf_第3页
第3页 / 共44页
工程流体力学课后习题答案(杜广生).pdf_第4页
第4页 / 共44页
工程流体力学课后习题答案(杜广生).pdf_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、工程流体力学(杜广生) 习题答案 第 1 页 共 44 页 工程流体力学(杜广生) 习题答案 第一章 习题 1. 解:根据相对密度的定义: 13600 13.6 1000 f w d 。 式中, w 表示 4 摄氏度时水的密度。 2. 解:查表可知,标准状态下: 2 3 1.976 / CO kg m , 2 3 2.927 / SO kg m , 2 3 1.429 / O kg m , 2 3 1.251 / N kg m , 2 3 0.804 / HO kg m ,因此烟气在标准状态下的密度为: 11 22 3 1.976 0.135 2.927 0.003 1.429 0.052 1

2、.251 0.76 0.804 0.05 1.341 / nn kg m 3. 解: (1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为 4atm 的空气的等温体积模量: 3 4 101325 405.3 10 T KP a ; (2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为 4atm的空气的等 熵体积模量: 3 1.4 4 101325 567.4 10 S Kp P a 式中,对于空气,其等熵指数为 1.4。 4. 解:根据流体膨胀系数表达式可知: 3 0.005 8 50 2 V dV V dT m 因此,膨胀水箱至少应有的体

3、积为 2 立方米。 5. 解:由流体压缩系数计算公式可知: 3 92 5 11 0 5 0.51 10 / (4.9 0.98) 10 dV V km N dp 6. 解:根据动力粘度计算关系式: 74 678 4.28 10 2.9 10 Pa S 7. 解:根据运动粘度计算公式: 工程流体力学(杜广生) 习题答案 第 2 页 共 44 页 3 62 1.3 10 1.3 10 / 999.4 ms 8. 解:查表可知,15摄氏度时空气的动力粘度 6 17.83 10 Pa s ,因此,由牛顿内摩擦定律可知: 63 0.3 17.83 10 0.2 3.36 10 0.001 U FA N

4、h 9. 解: 如图所示, 高度为 h 处的圆锥半径: tan rh ,则在微元高度 dh 范围内的圆锥表面积: 2 =2 = tan cos cos dh h dA r dh 由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有: = tan dr h 则在微元 dh 高度内的力矩为: 3 3 2 = = 2 tan tan tan tan cos cos hh dM dA r dh h h dh 因此,圆锥旋转所需的总力矩为: 33 4 3 0 = 2 = 2 4 tan tan cos cos H H Md M h d h 10. 解: 润滑油与轴承接触处的速度为 0,与轴接触处

5、的速度为轴的旋转周速度,即: = 60 nD 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即: = d dy 则轴与轴承之间的总切应力为: = TA D b 克服轴承摩擦所消耗的功率为: 2 = PT D b 因此,轴的转速可以计算得到: 3- 3 60 60 60 50.7 10 0.8 10 = = = =2832.16 r/min 3. 14 0.2 0.245 3. 14 0.2 0.3 P n DDD b 工程流体力学(杜广生) 习题答案 第 3 页 共 44 页 11解: 根据转速 n可以求得圆盘的旋转角速度: 229 0 = = 3 60 60 n 如图所示,

6、圆盘上半径为 r 处的速度: = r ,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可 看作线性分布,即: = d dy 则微元宽度 dr 上的微元力矩: 323 3 =2= 2 = 6 r dM dA r rdr r r dr r dr 因此,转动圆盘所需力矩为: 44 2 232 2 -3 0 ( 2) 0.4 0.23 = =6 =6 =6 3. 14 =71.98 N m 40 . 2 3 1 0 4 D D Md M r d r 12. 解: 摩擦应力即为单位面积上的牛顿内摩擦力。由牛顿内摩擦力公式可得: -3 4 = = =885 0.00159 =2814.3 21 0 d

7、Pa dy 13. 解: 活塞与缸壁之间的间隙很小,间隙中润滑油的速度分布可以看作线性分布。 间隙宽度: -3 -3 - 152.6-152.4 = = 10 =0. 1 10 22 Dd m 因此,活塞运动时克服摩擦力所消耗的功率为: 2 2 -4 -3 -2 -3 = = 6 =920 0.9144 10 3. 14 152.4 10 30.48 10 =4.42 0. 1 10 PT A d L d L kW 14. 解: 对于飞轮,存在以下关系式:力矩 M=转动惯量 J*角加速度 ,即 = d MJ dt 圆盘的旋转角速度: 2 2 600 = = 2 0 60 60 n 圆盘的转动惯

8、量: 22 = G Jm R R g式中,m为圆盘的质量,R为圆盘的回转半径,G为圆盘的重量。 工程流体力学(杜广生) 习题答案 第 4 页 共 44 页 角加速度已知: 2 =0.02 / rad s 粘性力力矩: 3 2 2 = = = 2 0 224 d ddd L MT r A d L ,式中,T 为粘性内摩擦力,d 为轴的直径,L 为轴套长度, 为间隙宽度。 因此,润滑油的动力粘度为: 2- 2 2- 3 3 23 2 - 23 - 2 2 500 (30 10 ) 0.02 0.05 10 = = = =0.2325 Pa s 55 9 . 8 3 . 1 4 ( 2 1 0 )

9、5 1 0 20 4 JG R dL gdL 15. 解: 查表可知,水在 20 摄氏度时的密度: 3 =998 / kg m ,表面张力: =0.0728 / Nm ,则由式 4 = cos h gd 可得, -3 -3 4 4 0.0728 10 = = =3.665 10 998 9.8 8 10 cos cos hm gd 16. 解: 查表可知, 水银在 20 摄氏度时的密度: 3 =13550 / kg m , 表面张力: =0.465 / Nm , 则由式 4 = cos h gd 可得, -3 -3 4 4 0.465 140 = = 1 . 3 4 1 0 13550 9.8

10、 8 10 cos cos hm gd 负号表示液面下降。工程流体力学(杜广生) 习题答案 第 5 页 共 44 页 第二章 习题 1. 解: 因为,压强表测压读数均为表压强,即 4 =2.7 10 A p Pa , 4 =2 . 91 0 B p Pa 因此,选取图中 1-1 截面为等压面,则有: =+ ABH g ppg h , 查表可知水银在标准大气压,20 摄氏度时的密度为 33 13 55 10 / . kg m 因此,可以计算 h 得到: 4 3 - (2.7+2.9) 10 = = =0.422 13.55 10 9.8 AB Hg pp hm g 2. 解: 由于煤气的密度相对

11、于水可以忽略不计,因此,可以得到如下关系式: 22 2 =+g a pph 水(1) 11 1 =+g a pph 水(2) 由于不同高度空气产生的压强不可以忽略,即 1,2 两个高度上的由空气产生的大气压强分别为 1 a p 和 2 a p , 并且存在如下关系: 12 -= aaa ppg H (3) 而煤气管道中 1 和 2 处的压强存在如下关系: 12 =+ g H pp 煤气(4) 联立以上四个关系式可以得到: 12 g+ g H =g H a hh 水煤 气 () 即: -3 12 3 1000 (100-115) 10 = + =1.28+ =0.53 / 20 a hh kg

12、m H 水 煤气 ()3. 解: 如图所示,选取 1-1 截面为等压面,则可列等压面方程如下: 12 +g=+ Aa H g p hp g h 水因此,可以得到: -3 -3 21 = + - g =101325+13550 9.8 900 10 -1000 9.8 800 10 =212.996 AaH g ppg hh k P a 水4. 解: 设容器中气体的真空压强为 e p ,绝对压强为 ab p 如图所示,选取 1-1 截面为等压面,则列等压面方程: += ab a p ghp 因此,可以计算得到: 工程流体力学(杜广生) 习题答案 第 6 页 共 44 页 -3 = - =1013

13、25-1594 9.8 900 10 =87.3 ab a p pgh k P a 真空压强为: = - = g =14.06 eaa b p pp h k P a 5. 解: 如图所示,选取 1-1,2-2 截面为等压面,并设 1-1截面距离地面高度为 H,则可列等压面方程: 1 +g = AA p HHp 水 () 21 += Hg p gh p 2 =+g - BB pph H H 水 () 联立以上三式,可得: +g = g+ +g AAB B p HHp h HH h 水水H g ()() 化简可得: 55 - 2 () + g = () g 2.744 10 1.372 10 +1

14、000 9.8 (548-304) 10 = =1.31 (13550-1000) 9.8 AB AB Hg pp HH h m 水 水 ()6. 解: 如图所示,选取 1-1,2-2截面为等压面,则列等压面方程可得: 211 g( )= ab p hhp 水12 3 2 +() = Hga p gh h p p 因此,联立上述方程,可得: 23 21 =() + g () =101325 13550 9.8 (1.61 1)+1000 9.8 (1.61 0.25)=33.65 kPa ab a Hg pp g hh hh 水因此,真空压强为: = =101325-33650=67.67 k

15、Pa eaa b ppp 7. 解: 如图所示,选取 1-1 截面为等压面, 载荷 F产生的压强为 22 4 4 5788 = = = =46082.8 3. 14 0.4 FF p Pa Ad 对 1-1 截面列等压面方程: 12 () ao i a H g p pg hg hpg H 水解得, 工程流体力学(杜广生) 习题答案 第 7 页 共 44 页 12 46082 8+800 9 8 0 3+1000 9 8 0 5 = 0 4 m 13600 9 8 . . . oi Hg pg hg h H g 水8. 解: 如图所示,取 1-1,2-2 截面为等压面,列等压面方程: 对 1-1

16、 截面: 12 += + aa H g p gh p gh 液体对 2-2 截面: 43 += + aa H g p gh p gh 液体联立上述方程,可以求解得到: 3 31 4 2 0.30 0 60 = = = =0.72m 0.25 . Hg gh hh h gh 液体9. 解: 如图所示,取 1-1 截面为等压面,列等压面方程: +g ( ) =+g ( ) +g AB sH g p hhp hh h 油油因此,可以解得 A,B 两点的压强差为: -3 -3 = g () + gg () = g( )+ g =830 9.8 (100 200) 10 +13600 9.8 200 1

17、0 =25842.6 =25.84 AB s H g sH g pp p h h h h h hh h Pa kPa 油油 油如果 =0 s h ,则压强差与 h 之间存在如下关系: = g () + gg () =( )g AB s H g Hg ppp hh h hh h 油油 油10. 解: 如图所示,选取 1-1,2-2,3-3截面为等压面,列等压面方程: 对 1-1 截面: 12 1 +g ( ) =+g AAH g p hhp h 油对 2-2 截面: 322 g( )= BA p hhhp 油对 3-3 截面: 23 +g+g= BB H g p hh p 油联立上述方程,可以解

18、得两点压强差为: 1122 -2 12 = ggg + g =( )g( + )=(13600-830) 9.8 (60+51) 10 =138912. 1 =138.9 A B Hg Hg Hg pp p h h h h hh Pa kPa 油油 油11. 解: 如图所示,选取 1-1 截面为等压面,并设 B 点距离 1-1 截面垂直高度为 h 工程流体力学(杜广生) 习题答案 第 8 页 共 44 页 列等压面方程: +g= Ba p hp ,式中: -2 =80 10 20 sin h 因此,B 点的计示压强为: -2 = = = 870 9.8 80 10 20 = 2332 sin

19、eBa p pp g h P a 12. 解: 如图所示,取 1-1 截面为等压面,列等压面方程: += + 0 1 . aa pg H pg H 油水 () 解方程,可得: 01 1000 0 1 = 0 5 m 1000-800 . . . H 水 水油13. 解: 图示状态为两杯压强差为零时的状态。 取 0-0 截面为等压面,列平衡方程: 11 22 += + p gH p gH 酒精 煤 油,由于此时 12 = p p ,因此可以得到: 12 = gH gH 酒精 煤油 (1) 当压强差不为零时,U形管中液体上升高度 h,由于 A,B 两杯的直径和 U形管的直径相差 10 倍,根据体

20、积相等原则,可知 A杯中液面下降高度与 B 杯中液面上升高度相等,均为 /100 h 。 此时,取 0-0截面为等压面,列等压面方程: 12 12 +( ) = +(+) 100 100 hh pg H hpg Hh 酒精 煤油由此可以求解得到压强差为: 12 21 21 =(+)( ) 100 100 101 99 =( )+ ( ) 100 100 hh pp p gH h gH h gH gH gh 煤油 酒 精 煤油 酒精 酒精 煤油将式(1)代入,可得 101 99 101 99 = ( )=9.8 0.28 ( 870 830)=156.4 Pa 100 100 100 100 p

21、g h 酒精 煤油14. 解: 根据力的平衡,可列如下方程: 左侧推力=总摩擦力+活塞推力+右侧压力 即: =0. 1 + + ( ) e pAF F p AA , 式中 A为活塞面积,A为活塞杆的截面积。 由此可得: 工程流体力学(杜广生) 习题答案 第 9 页 共 44 页 422 2 1. 1 7848+9.81 10 (0.1 -0.03 ) 0. 1 + + ( ) 4 = = =1189.0 0.1 4 e FFpAA p kPa A 15. 解: 分析:隔板不受力,只有当隔板左右液面连成一条直线时才能实现(根据上升液体体积与下降液体体积相 等,可知此直线必然通过液面的中心) 。如

22、图所示。 此时,直线的斜率 = tan a g (1) 另外,根据几何关系,可知: 21 12 = + tan hh ll (2) 根据液体运动前后体积不变关系, 可知: 1 1 + = 2 hh h , 2 2 + = 2 hh h 即, 11 =2 hhh , 22 =2 hhh 将以上关系式代入式(2) ,并结合式(1) ,可得: 21 12 2( ) = + hh a gll 即加速度 a应当满足如下关系式: 21 12 2( ) = + gh h a ll 16. 解: 容器和载荷共同以加速度 a 运动,将两者作为一个整体进行受力分析: 2121 -= ( + ) f mgCmg m

23、 ma ,计算得到: 21 2 21 25 9.8 0.3 4 9.8 = = =8.043 / ( + ) 25+4 f mg Cmg am s mm 当容器以加速度 a 运动时,容器中液面将呈现一定的倾角 ,在水刚好不溢出的情况下,液面最高点与容 器边沿齐平,并且有: = tan a g 根据容器中水的体积在运动前后保持不变,可列出如下方程: 1 = 2 tan bbhbbH bbb 即: 1 1 8.043 = + =0. 15+ 0.2 =0.232m 229 . 8 tan Hh b 17. 解: 工程流体力学(杜广生) 习题答案 第 10 页 共 44 页 容器中流体所受质量力的分

24、量为: 0 x f , 0 y f , g a f z 根据压强差公式: ddddd xyz p fxfyfz agz 积分, h p p z g a p a 0 d d g a gh a g h g a h g a p p a 1 0 所以, 1 a a pp g h g a g h p p a h p p g a a (1) (1) 101325 1000 1.5 9 8 4 9 108675 Pa a pp hga (2) 式(1)中,令 = a p p,可得 2 =9.8 / ag m s (3) 令 =0 p 代入式(1) ,可得 2 0 101325 9 80665 58.8m s

25、 1000 1.5 . a pp ag h 18. 解: 初始状态圆筒中没有水的那部分空间体积的大小为 1 2 4 1 h H d V ( 1) 圆筒以转速 n1 旋转后,将形成如图所示的旋转抛物面的等压面。令 h 为抛物面顶点到容器边缘的高度。 空体积旋转后形成的旋转抛物体的体积等于具有相同底面等高的圆柱体的体积的一半: h d V 2 4 1 2 1 ( 2) 由(1)(2),得 h d h H d 2 1 2 4 1 2 1 4 1 ( 3) 即 1 2 h H h ( 4) 等角速度旋转容器中液体相对平衡时等压面的方程为 C gz r 2 2 2 ( 5) 工程流体力学(杜广生) 习题

26、答案 第 11 页 共 44 页 对于自由液面,C=0。圆筒以转速 n1 旋转时,自由液面上,边缘处, 2 d r , h z ,则 2 2 2 0 2 d gh ( 6) 得 d gh 2 2 ( 7) 由于 60 2 1 n ( 8) d gh d gh n 2 60 2 2 30 30 1 ( 9) (1)水正好不溢出时,由式(4)(9),得 d h H g d h H g n 1 1 1 120 2 2 60 ( 1 0) 即 min r 178.3 3 . 0 3 . 0 5 . 0 80665 . 9 120 1 n(2)求刚好露出容器底面时,h=H,则 min r 199.4 3

27、 . 0 5 . 0 80665 . 9 2 60 2 60 2 60 1 d gH d gh n(3)旋转时,旋转抛物体的体积等于圆柱形容器体积的一半 H d V 2 4 1 2 1 ( 1 1) 这时容器停止旋转,水静止后的深度 h2,无水部分的体积为 2 2 4 1 h H d V ( 1 2) 由(11)(12),得 2 2 2 4 1 4 1 2 1 h H d H d ( 13) 得 m 25 . 0 2 5 . 0 2 2 H h工程流体力学(杜广生) 习题答案 第 12 页 共 44 页 19. 解: 根据转速求转动角速度: 2 2 600 = = 2 0 60 60 n 选取

28、坐标系如图所示,铁水在旋转过程中,内部压强分布满足方程: 22 =( ) + 2 r pgz C g 由于铁水上部直通大气,因此在坐标原点处有: =0, =0 zr, = a p p ,因此可得, = a Cp 此时,铁水在旋转时内部压强分布为: 22 =( ) + 2 a r pgz p g 代入车轮边缘处 M 点的坐标:=, = 2 d zh r ,可以计算出 M点处的计示压强为: 22 22 2 2 (20 ) (0.9) = ( )= ( + )=7138 9.8 ( +0.2)=2864292.4Pa 28 8 9 . 8 a rd ppg zg h gg 采用离心铸造可以使得边缘处

29、的压强增大百倍,从而使得轮缘部分密实耐磨。 关于第二问:螺栓群所受到的总拉力。题目中没有告诉轮子中心小圆柱体的直径,我认为没有办法计算, 不知对否?有待确定! 20. 解: 题目有点问题! 21. 解: 圆筒容器旋转时,易知筒内流体将形成抛物面,并且其内部液体的绝对压强分布满足方程: 22 =( ) + 2 r pgz C g (1) 如图所示,取空气所形成的抛物面顶点为坐标原点,设定坐标系 roz 当 =0, =0 zr 时,有 = a p p (圆筒顶部与大气相通) , 代入方程(1)可得, = a Cp 由此可知,圆筒容器旋转时,其内部液体的压强为: 22 =( ) 2 a r p pg

30、 z g 令 = a p p 可以得到液面抛物面方程为: 22 = 2 r z g (2) 工程流体力学(杜广生) 习题答案 第 13 页 共 44 页 下面计算抛物面与顶盖相交处圆的半径 0 r ,以及抛物面的高度 0 z ,如图所示: 根据静止时和旋转时液体的体积不变原则,可以得到如下方程:V- V= V 筒气水(3) 其中, 2 V=RH 筒 , 3 V =0.25m 水(4) 气体体积用旋转后的抛物面所围体积中的空气体积来计算: 取高度为 z,厚度为 dz 的空气柱为微元体,计算其体积: 2 = dV r dz 气,式中 r为高度 z 处所对应抛物面 半径,满足 22 = 2 r z

31、g ,因此,气体微元体积也可表示为: 2 2 2 = g dV r dz zdz 气对上式积分,可得: 0 2 0 22 0 =2= z gg Vd V z d zz 气气(5) 联立(3) 、 (4) 、 (5)式,可得: 22 0 2 RH = 0 . 2 5 g z ,方程中只有一个未知数 0 z ,解方程即可得到: 0 =0.575 zm 代入方程(2)即可得到: 0 =0.336 rm 说明顶盖上从半径 0 r 到 R的范围内流体与顶盖接触,对顶盖形成压力,下面将计算流体对顶盖的压力 N: 紧贴顶盖半径为 r处的液体相对压强为(考虑到顶盖两侧均有大气压强作用) : 22 0 =( )

32、 2 e r pgz g 则宽度为 dr的圆环形面积上的压力为: 22 23 00 =( ) 2= ( 2) 2 e r dN p dA g z rdr r gz r dr g 积分上式可得液体作用在顶盖上,方向沿 z 轴正向的总压力: 0 0 23 24 2 00 24 2 24 2 00 0 0 24 2 24 2 1 = ( 2)= 4 11 = + 44 11 =3.14 1000 10 0.4 9.8 0.575 0.4 10 0.336 +9.8 0.575 0.336 44 =175.6N R R r r N dN r gz r dr r gz r Rg z R rg z r 由

33、于顶盖的所受重力 G方向与 z 轴反向,因此,螺栓受力 F=N-G=175.6-5*9.8=126.6N 22. 解: 如图所示,作用在闸门右侧的总压力: 大小: = C Fg h A ,式中 C h 为闸门的形心淹深,A为闸门面积。 由于闸门为长方形,故形心位于闸门的几何中心,容易计算出:工程流体力学(杜广生) 习题答案 第 14 页 共 44 页 1 = 2 sin C hH L , = A bL ,式中 L为闸门的长 L=0.9m,b 为闸门的宽度 b=1.2m。 所以可以得到: 1 = ( ) 2 sin C Fg h Ag HL b L 总压力 F 的作用点 D 位于方形闸门的中心线

34、上,其距离转轴 A 的长度 =+ Cx DC C I yy y A,式中 C y =0.45m, 为形心距离 A点的长度, 33 1.2 0.9 = = =0.0729 12 12 Cx bL I ,为形心的惯性矩。因此,可计算出: 0.0729 = + =0.45+ =0.6 0.45 1.2 0.9 Cx DC C I yy yA m 根据力矩平衡可列出如下方程: =0 . 3 D Fy G ,G为闸门和重物的重量, 即: 1 1000 9.8 ( 0.9 60 ) 1.2 0.9 0.6=10000 0.3 2 sin H 代入各值,可以计算得到:H=0.862m 23. 解: 作用在平

35、板 AB 右侧的总压力大小: 1.8 = =1000 9.8 (1.22+ ) 1.8 0.9=33657 2 C Fg h A N 总压力 F的作用点 D位于平板 AB 的中心线上,其距离液面的高度 =+ Cx DC C I yy y A, 式中 1.8 = =1.22+ =2. 12 2 CC yhm ,为形心距离液面的高度, 33 0.9 1.8 = = =0.4374 12 12 Cx bL I ,为形心的惯性 矩。因此,可计算出: 0.4374 = + =2. 12+ =2.247 2. 12 1.8 0.9 Cx DC C I yym yA 24. 解: 作用在平板 CD左侧的总压

36、力大小: 1.8 = =1000 9.8 (0.91+ sin45 ) 1.8 0.9=24550.6 2 C Fg h A N 总压力 F的作用点 D位于平板 CD的中心线上,其距离 O点长度 =+ Cx DC C I yy y A, 工程流体力学(杜广生) 习题答案 第 15 页 共 44 页 式中 0.91 1.8 =+= 2 . 1 9 45 2 sin C y m ,为形心距离 O点的长度, 33 0.9 1.8 = = =0.4374 12 12 Cx bL I ,为形心的惯性 矩。因此,可计算出: 0.4374 = + =2. 19+ =2.31 2. 19 1.8 0.9 Cx

37、 DC C I yym yA 25. 解: 设水闸宽度为 b,水闸左侧水淹没的闸门长度为 l 1 ,水闸右侧水淹没的闸门长度为 l 2 。作用在水闸左侧压 力为 1 1 1 A gh F c p ( 1) 其中 2 1 H h c sin 1 H l sin 1 1 H b bl A 则 sin 2 sin 2 2 1 b gH H b H g F p ( 2) 作用在水闸右侧压力为 2 2 2 A gh F c p ( 3) 其中 2 2 h h c sin 2 h l sin 2 2 h b bl A 则 sin 2 sin 2 2 2 b gh h b h g F p ( 4) 由于矩形

38、平面的压力中心的坐标为 l bl l bl l A x I x x c cy c D 3 2 2 12 2 3 ( 5) 所以,水闸左侧在闸门面上压力中心与水面距离为 sin 3 2 1 H x D ( 6) 水闸右侧在闸门面上压力中心与水面距离为 sin 3 2 2 H x D ( 7) 对通过 O点垂直于图面的轴取矩,设水闸左侧的力臂为 d 1 ,则 x x l d D 1 1 1( 8) 得 工程流体力学(杜广生) 习题答案 第 16 页 共 44 页 sin 3 sin 3 2 sin 1 1 1 H x H H x x l x d D ( 9) 设水闸右侧的力臂为 d 2 ,则 x

39、x l d D 2 2 2( 1 0) 得 sin 3 sin 3 2 sin 2 2 2 h x h h x x l x d D ( 1 1) 当满足闸门自动开启条件时,对于通过 O点垂直于图面的轴的合力矩应为零,因此 0 2 2 1 1 d F d F p p( 1 2) 则 sin 3 sin 2 sin 3 sin 2 2 2 h x b gh H x b gH( 13) sin 3 sin 3 2 2 h x h H x H 3 3 2 2 sin 3 1 h H x h H h H h Hh H h H h H x 2 2 2 2 3 3 sin 3 1 sin 3 1 m 0.7

40、95 4 . 0 2 4 . 0 4 . 0 2 2 60 sin 3 1 2 2 x 26. 解: 作图原则: (1)题目:首先找到曲面边界点和自由液面水平线,从曲面边界点向自由液面作垂线,则自由液面、垂 线、曲面构成的封闭面就是压力体。本题目中是虚压力体。力的方向垂直向上。 (2)题目:将与水接触的曲面在圆的水平最大直径处分成两部分,对两部分曲面分别采用压力体的做法 进行作图,上弧面是实压力体,下弧面是包括两部分:实压力体和虚压力体。求交集即可得到最终的压力 体。 27. 解: 由几何关系可知,= 3 2 sin H r 水平方向的总压力: 2 1 = = 1=1000 9.8 3 =44

41、100 22 px C x H Fg h AgH N 工程流体力学(杜广生) 习题答案 第 17 页 共 44 页 垂直方向的总压力: 等于压力体内的水重量,该压力体为实压力体,垂直分力方向向下: 22 2 11 =( ) H 1 = 1( 1 ) H 2 360 2 360 14 5 =1000 9.8 1 (1 45 ) 3 2 3 3. 14 (3 2) 2 360 =11417 cos cos cos pz FV ggrrr r g r r N 说明:绘制压力体如图所示,则易知压力体的体积等于(梯形面积-扇形面积)*闸门长度 则作用在扇形闸门上的总压力为: 22 2 2 = + = 4

42、4100 +11417 =45553.9 pp xp z FFF N 设总压力与水平方向的夹角为 ,则 11417 = = =0.259 44100 tan pz px F F ,所以 = 0.259=26.50 arctan 28. 解: 分析:将细管中的液面作为自由液面,球形容器的上表面圆周各点向自由液面作垂线,则可以得到压力体。 液体作用于上半球面垂直方向上的分力即为上班球体作用于螺栓上的力,方向向上。 压力体的体积可以通过以直径 d 的圆为底面,高为 d/2 的圆柱体体积减去半个球体的体积得到。即 3 23 11 41 = = 42 2 322 4 p dd VVV d d 柱半 球因

43、此,液体作用于球面垂直向上的分力为: 33 11 = = = 1000 9.8 3. 14 2 =10257.3 24 24 pz p FV g g d N 29. 解: 分析问题:C 点的压强是已知的,可否将 C 点想象中在容器壁面上接了一个测压管,将 C 点的相对压强换 算为测压管中水头高度,而测压管与大气相通。此时,可将测压管中的液面看作自由液面,作半球面 AB 在垂直方向受力的压力体图。 求解: 测压管水头高度: 196120 101325 = = 9 . 6 7 9800 a pp Hm g 如图所示,做出压力体图,则: 233 14 2 = = ( ) = (9.67 1 )=25.14m 23 3 p VVV RHh R

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报