收藏 分享(赏)

我的高考数学错题本——第1章 集合易错题.doc

上传人:eco 文档编号:4256215 上传时间:2018-12-18 格式:DOC 页数:5 大小:459.50KB
下载 相关 举报
我的高考数学错题本——第1章 集合易错题.doc_第1页
第1页 / 共5页
我的高考数学错题本——第1章 集合易错题.doc_第2页
第2页 / 共5页
我的高考数学错题本——第1章 集合易错题.doc_第3页
第3页 / 共5页
我的高考数学错题本——第1章 集合易错题.doc_第4页
第4页 / 共5页
我的高考数学错题本——第1章 集合易错题.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、我的高考数学错题本第 1 章 集合易错题易错点 1 遗忘空集致误由于空集是任何非空集合的真子集,在解题中如果思维不够缜密就有可能忽视了 这种情况,B导致解题结果错误【例 1】 设 , , ,求 的值2|30Ax|10BxaBAa【错解】 , ,从而 或 31a【错因】忽略了集合 的情形B【正解 】当 时,得 或 ; 时,得 所以 或 或 30a13a0【纠错训练】已知 , ,若 ,求 a 的取值范围|2Axa|15Bx或 =AB【解析】由 , (1 )若 ,有 ,所以 =B23(2 )若 ,则有 ,解得 352a1a综上所述, 的取值范围是 |23x或易错点 2 忽视集合元素的三要素致误集合中

2、的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求【例 2】已知集合 , ,若 ,求实数 , 的值14Aa2,BbABab【错解】由题意得, ,解得 或 2ba【错因】本题误认为两个集合相等则对应项相同,这显然违背了集合的无序性【正解】 ,由集合元素的无序性,有以下两种情形:AB(1 ) ,解得 或 ;24ab2ab(2 ) ,解得 或 ,经检验 与元素互异性矛盾,舍去24041212ab 或 或 2ab04ab【例 3】 已知集合 ,集合 ,若 ,求 的值1A21,BaAa【错解】 或 ,解得 或 或 24a

3、2a0【错因】没有将计算结果代回到集合中检验,忽略了集合中元素的互异性,导致出现了增解【正解】 或 ,解得 或 或 ,经检验当 时, ,与集合中元222a11a,41A素的互异性相矛盾,舍去,所以 或 0【纠错训练】已知集合 , ,若 ,则实数 的值是( )1,A|3BxBA B C D30,203,23【解析】若 ,则集合 B 是集合 A 的子集,当 ,显然 ;当 时,解得 ,0a3Ba则有 或 ,解得 或 ,即 的值为 ,选 A31a23a2a30,2易错点 3 弄错集合的代表元【例 4】已知 , ,则集合 中元素的个数为_|1 Ayx2(,)|1BxyB【错解】 1 个或无穷多个【错因】

4、没有弄清集合 B 的代表元的含义【正解】集合 A 是一个数集,集合 B 是一个点集,二者的交集为空集,所包含的元素个数为 0【例 5】已知函数 , ,那么集合 中元素()yfx,ab(,)|(),(,)|2xyfxabxy的个数为( )A1 A0 C0 或 1 D1 或 2 【错解】不知题意,无从下手,蒙出答案 D【错因】没有弄清两个集合打代表元,事实上, 、 、 分|()xyf|()yfx,)|()yfx别表示函数 的定义域、值域、函数图象上的点的坐标组成的集合()yfx【正解】本题中集合的含义是两个图象交点的个数,从函数值的唯一性可知,两个集合的交中之多有一个交点,故选 C【纠错训练】1已

5、知集合 , ,则 _2|1Ayx|2BxyAB【解析】 , ,所以 |1Ay|0B|1A【纠错训练】2设集合 , ,则 _(,)|25xy(,)|3xy【解析】由 ,解得 ,从而 253xy12xy(1,2)AB易错点 4 忽略了题目中隐含的限制条件【例 6】 【2015 高考陕西,理 1】设集合 , ,则 ( )2|Mx|lg0NxMNA B C D0,1(0,0,1)(,1【错解】 , ,所以 ,故选 D2xlgxx(,【错因】在解 时,忽略了 这个隐含的限制条件lg【正解】 , ,所以 ,故选 A20,1xl01xx0,1【纠错训练】 【2015 高考重庆,理 4】 “ “是“ ”的(

6、)12og()0A、充要条件 B、充分不必要条件 C、必要不充分条件 D、既不充分也不必要条件【解析】 ,因此选 B12log()021xxx易错点 5 集合的交并运算弄反【例 7】【2015 高考山东,理 1】已知集合 , ,则 ( )2430Ax24xABA(1,3) B(1,4) C(2,3) D(2,4)【错解】因为 , ,所以 ,故选 B3x1AB【错因】将集合的“交运算”误认为是“并运算” 【正解】 ,故选 C12423ABxx【纠错训练】 【2015 高考四川,理 1】设集合 ,集合 ,|(1)0A|13Bx则 ( )A B C D |13x|x|2x|2【解析】 ,故选 A|2

7、,|13,|13AB【错题巩固】1设集合 2|Mx, |lg0Nx,则 MN( )A 0,1 B (,1 C 0,1) D (,1A【解析】 2|0,1Mx, |lg0|1Nxx,所以 MN0,1故选 A2集合 A = x | x 2C【解析】 |,2R或,因为 ,所以 a2,选 C.3已知 =x| 2x5, =a+1,2a1.若 A,则实数 的取值范围是_ 【解析】易知 B,所以应满足215a,解得 2a3故实数 的取值范围是 (2,3.4已知 A=x| 2x5, =x| a+1x2a1.若 BA,则实数 的取值范围是_ 3a【解析】当 B时,即 12 ,有 a2 ; 当 B,则215a,解

8、得 2a3.综合得 a 的取值范围为 a3.5已知集合 A 14(,,集合 B 1(,2若 BA,则实数 a的取值范围是_02a【解析】 124aa,解得 02a,所以实数 a 的取值范围为 02a6知集合 22,|30ABx,A B,则实数 a的取值范围是 01a【解析】132a,得 1,当 a, 1,3,不符合,所以 01a。7已知集合 Ax |1x3 ,B x|2mx1m 若 AB ,则实数 m 的取值范围是 0,)【解析】由 ,得:若 2m1m,即 m 时, ,符合题意; 若132m1m,即 m 时,需 31或 3解得 0m .综上,实数 m 的取值范围是 0,)13 138已知集合

9、2|Ax, |1Bxa.若 BA,求实数 a的值.1,0,或 【解析】集合 ,,对于集合 |1x,所以当 B时,a=0;当 1B时,a=1;当 B时, 1a.综上,a 的值为 1,0,或 .9若集合 2|0,AxxR,集合 ,2B,且 AB,求实数 a的取值范围 【解析】 (1)若 ,则 240a,解得 a;(2)若 1A,则 210,解得 2a,此时 ,适合题意;(3 )若 A,则 210,解得 5,此时 ,,不合题意.综上,实数 a的取值范围为 ,)10已知集合 A=x|2x7 , B=x|m+1x2m1 ,若 AB,则实数 m的取值范围是 【解析】 则 当 B=时,m+1 2m1,解得

10、2m; 当 时,127m,解得 4所以实数 m的取值范围是 411已知集合 |14Axa, |(3)5Bxyx,且 BA,则实数 a的取值范围是( )A. 0 B. 0 C. 1a D. 【解析】化简得 |(3)50B|当 时, 成立,即有14a成立,所以 a;当 A时,要使 B,故需1435a,解得 01a综上,.故选 D.12已知集合 28Ax , 2Bxa,若 A=,则实数 a 的取值范围是_,5【解析 】因为 =,所以 ,当 B时, 2,解得 2;当 B时,需满足28a,解得 25a.综上,实数 a 的取值范围是 ,513已知集合 1,A, |30Bx,若 BA,则实数 a的值是( )A 30,2 B , C 3,2 D 3A【解析】由题可知:若 A,则集合 B 是集合 A 的子集,集合 B 有两种可能,一种是空集,一种是有限集,当集合 B 是空集时,显然 a=0,当集合 B 是有限集时,解得 ax,则有 31a或者 23a。即 a 的值为 30,2。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报