1、第 7 章 正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。7.1 单指标正交试验设计及其极差分析极差分析法简称 R 法。它包括计算和判断两个步骤,其内容如图 7-1 所示。图 7-1 R 法示意图图中,K jm为第 j 列因素 m 水平所对应的试验指标和, jm为 Kjm的平均值。由 Kjm的大小可以判断 j 因素的优水平和各因素的水平组合,即最优组合。R j 为第 j 列因素的极差,即第 j 列因素各水平下平均指标值的最大值与最小值之差:Rj
2、=max( )-min( )jmjK,21 jmjK,21Rj反映了第 j 列因素的水平变动时,试验指标的变动幅度。R jR 法1.计算2.判断Kjm, 1 jmRj 2因素主次 1优水平 2最优组合 3越大,说明该因素对试验指标的影响越大,因此也就越重要。于是依据 Rj的大小,就可以判断因素的主次。极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例-来说明单指标正交试验结果的极差分析方法。一、 确定因素的优水平和最优水平组合例 6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。拟通过正交试验寻找酶法液化工艺的最佳工艺条件。在例-中,不考虑因素间的交互作用(因例
3、-是四因素三水平试验,故选用 L9(34)正交表) ,表头设计如表-所示,试验方案则示于表-中。试验结果的极差分析过程,如表-所示.表 6-4 因素水平表水平 因素加水量(ml/100g)A加酶量(ml/100g)B酶解温度(C)C酶解时间(h)D1231050901472035501.52.53.5表 6-6 试验方案及结果因 素试验号A B C D试验结果液化率(%)1231(10)111(1)2(4)3(7)1(20)2(35)3(50)1(1.5)2(2.5)3(3.5)0.0017.024.04567892(50)223(90)3312312323131231223112.047.0
4、28.01.0018.042.0试验指标为液化率,用 yi表示,列于表-和表-的最后一列。表 7-1 试验方案及结果分析因 素试验号A B C D试验结果液化率(%)1234567891(10)112(50)223(90)331(1)2(4)3(7)1231231(20)2(35)3(50)2313121(1.5)2(2.5)3(3.5)3122310.0017.024.012.047.028.01.0018.042.0K1K2K341.087.061.013.082.094.046.071.072.089.046.054.0123K13.729.020.34.327.331.315.323.
5、724.029.715.318.0优水平 A2 B3 C3 D1Rj 15.3 27.0 8.7 14.4主次顺序 B A D C=189.0计算示例:因素 A 的第水平 A1所对应的试验指标之和及其平均值分别为:KA1=y1+y2+y3=0+17+24=41, KA1=13.71A3同理,对因素 A 的第水平 A2和第水平 A3,有KA2=y4+y5+y6=12+47+28=87, KA2=292KA3=y7+y8+y9=1+18+42=61, KA3=20.33A1由表-或表-可以看出,考察因素 A 进行的三组试验中(A 1,A2,A3) ,B、C、D 各水平都只出现了一次,且由于 B、C
6、、D 间无交互作用,所以 B、C、D 因素的各水平的不同组合对试验指标无影响,因此,对 A1、A 2和 A3来说,三组试验的试验条件是完全一样的。假如因素 A 对试验指标无影响,那么 应该相等,但321,AAK由上面的计标可知, 实际上并不相等,显然,这是由于321,AAK因素 A 的水平变化引起的,因此, 的大小反映了 A1、A 2321,A和 A3对试验指标影响的大小。由于液化率 y 越大越好,而,所以可判断 A2为因素 A 的优水平。12AK同理,可判断因素 B、C、D 的优水平分别为 B3、C 3、D 1。所以,优水平组合为 A2B3C3D1,即最优工艺条件为加水量 A2=50ml/1
7、00g、加酶量 B3=7ml/100g、酶解温度 C3=50。 C 和酶解时间 D1=1.5 小时。二、确定因素主次顺序极差 Rj按定义计算,如,3.157.0.2912 AAKR343BB同理可求出 RC和 RD. 计算结果列于表 7-1 中。比较 Rj值可知RBRARDRC,所以试验因素对试验指标的影响的主次顺序为 BADC。即加酶量影响最大,其次是加水量和酶解时间,而酶解温度的影响最小。三、绘制因素与指标趋势图为了更直观地反映因素对试验指标的影响规律和趋势,用因素的水平作横坐标,试验指标的平均值( )作纵坐标,画出因素与指标的jK关系图(即趋势图),如图 7-2 所示. (p137)趋势
8、图可为进一步试验时选择因素水平指明方向.如对因素 A,由图 7-2 可见,A 2水平时,指标最高,但若能在 A2附近再取一些水平(如40、60)作进一步试验,则有可能取得更高的指标;对 D 因素,若能取一些比 D1更小的水平(如 1.0 和 0.5)作进一步试验,也有可能得到更好的结果.以上三个步骤即为极差分析的基本程序与方法.四、说明与讨论1、计算结果的检验: 每一列的 Kj之和应等于全部试验结果(即指标值)之和, 即 ,m 为水平数,n 为试验总实施次数.njmjyK112.因素的最优水平组合,在实际处理中是灵活的,即对于主要因素,一定要选最优水平;而对次要因素,则应权衡利弊,综合考虑其它
9、条件进行水平选取,从而得到最符合实际生产的最优或较优生产工艺条件.3.例 6-2 的最优工艺条件 A2B3C3D1并不在实施的 9 个试验之中.这表明优化结果不仅反映了已做的试验信息,而且反映了全面试验信息.因此,正交试验设计的部分实施方案反映了全面试验信息.4.例 6-2 得出的最优工艺条件,只有在试验所考察的范围内才有意义,超出这个范围,情况就可能发生变化。另外,只能说是“较优工艺条件”,而不能说是“最优工艺条件”.最好能根据趋势图做进一步试验,找出最靠近最优的工艺条件.5.对已确定的最优工艺条件(如例 6-2 的 A2B3C3D1)进行重复试验,验证其试验指标是否最优.7.2 多指标正交
10、试验设计及其极差分析在实际生产和科研试验中,所要考察的指标往往不止一个,这一类的试验设计叫做多指标试验设计.在多指标试验设计中,各指标之间可能存在一定的矛盾,如何兼顾各个指标,找出使每个试验都尽可能好的试验条件呢?换言之,应如何分析多指标试验设计的结果呢?常用的有两种方法:综合平衡法和综合评分法.下面举例说明综合平衡法的分析方法.这种方法在试验方案安排和各指标计算分析方法上,与单指标试验完全一样.其步骤是先分别找出各个指标最优或较优的生产条件,然后将这些生产条件综合平衡,找出兼顾每个指标都尽可能好的生产条件.例 7-1 在油炸方便面的生产中,主要原料质量和主要工艺参数对产品的质量有影响。今欲通
11、过正交试验确定最佳生产条件。一. 试验方案设计1.确定试验指标评价方便面质量好坏的主要指标是: 脂肪含量(越低越好),水分含量(越高越好)和复水时间(越短越好)。2挑因素,选水平,列出因素水平表根据专业知识和实际经验,确定试验因素和水平,如表 7-2 所示。表 7-2 因素水平表水平 因素 湿面筋值(%)A改良剂用量(%)B油炸时间(s)C油炸温度(C)D1232832360.050.0750.107075801501551603选正交表,设计表头,编制试验方案本试验是四因素三水平试验,不考虑因素间的交互作用,因此,可应选 L9(34)安排试验,表头设计和试验方案见表 7-3(p140) 。按
12、上述方案实施后,将每一项试验指标都记录下来,见表 7-3。注:对极差分析可以这样选正交表,但对方差分析应留有空列,以便估计试验误差.表 7-3 试验方案及结果分析因 素 试验结果试验号A B C D脂肪(%)水分(%)复水时间(s)1234567891(28)112(32)223(36)331(0.05)2(0.075)3(0.10)1231233(80)1(70)2(75)2311232(155)1(150)3(160)13232124.822.523.623.822.419.318.419.020.72.13.82.02.81.72.72.52.02.33.53.73.03.02.22.8
13、3.02.73.6K1K2K370.965.558.167.063.063.660.266.467.967.063.164.4123K23.621.819.422.321.321.220.122.122.622.321.021.5脂肪含量R 4.2 1.1 2.5 1.3=194.5K1K2K37.97.26.87.47.56.99.06.86.18.96.86.2123K2.632.402.272.472.502.303.002.272.032.972.272.07水分含量R 0.36 0.20 0.97 0.90=21.9K1K2K310.28.09.39.58.69.49.58.79.3
14、10.39.08.2复水时间 13.40 3.17 3.17 3.43=27.52K32.673.102.873.132.903.103.002.73R 0.73 0.30 0.27 0.70二试验结果分析1计算每列各水平下每种试验指标的数据和(K 1,K 2,K 3) ,及其平均值( ) ,并计算极差 R,填入表 7-3 中。321,2画出因素与各种指标的趋势图,如图 7-3 所示(p140) 。3按极差大小列出各指标下各因素主次顺序:各因素主次顺序表试 验 指 标 主- 次脂肪含量(%) A C D B水分含量(%) C D A B复水时间(s) A D B C4初选最优工艺条件根据各指标
15、下的平均数据和 ,初步确定各因素的最优321,K水平组合为:对脂肪含量(%):A 3B3C1D2 (脂肪含量越低越好)对水分含量(%):A 1B2C1D1 (水分含量越高越好)对复水时间(s):A 2B2C2D3 (复水时间越短越好)5综合平衡确定最优工艺条件(难点)!由于三个指标单独分析出来的最优条件并不一致,所以必须根据因素对三个指标影响的主次顺序,综合考虑,确定出最优条件。首先,把水平选取上没有矛盾的因素的水平定下来,即如果对三个指标影响都重要的某一因素,都是取某一水平时最好,则该因素就是选这一水平。在本试验中无这样的因素,因此我们只能逐个考察每一因素。对因素 A:从主次顺序来看,对脂肪
16、含量和复水时间的影响都排在第一位为主要因素,而对水分含量的影响则排在第三位,属次要因素,因此,应以主要因素为主选因素的水平。从初选的最优水平组合中可以看出,对脂肪含量选 A3为好,而对复水时间,则选 A2为好。因为二者不一致,所以还须根据试验结果分析确定选 A2还是A3。从表 7-3 可知,当取 A2时,复水时间比取 A3时缩短 16.1%(有利),即(2.67-3.10)2.67100%=-16.1%,而脂肪含量只比取 A3时增加 11.0%(不利),即 (21.8-19.4)21.8100%=11.0%,且从水分含量指标来看,取 A2也比取 A3时更好,因此,应选取 A2水平。注: 当取
17、A3时,脂肪含量比取 A2时降低 12.4%(有利),即(19.4-21.8)/19.4100%=12.4%,复水时间比取 A2时增加 13.9%(不利) ,即(3.10-2.67)/3.10100%=13.9%。综合平衡A 不 利 有 利A2 11.0% 16.1%A3 13.9% 12.4%对 “有利”部分,A 2A3;对 “不利”部分,A 2“不利” ;选 D3时,“不利”“有利”.并且 D1 (有利)D 3(有利之和绝对值),D 1 (不利之和) D3(不利绝对值).因此,从定量分析来看,D 应取 D1,而不是取 D3.那么,究竟如何决定 D 的水平呢?最后,应该再进行 A2B2C1D
18、1和 A2B2C1D3两次试验,由试验结果决定 D1好还是 D3好!实践是检验真理的唯一标准!7.3 混合型正交表的试验设计极差分析前面讨论的都是水平数 相同的正交试验设计.但在实际工)(knmL作中,有些试验受到设备、原材料和生产条件等限制.某些因素的水平选择受到制约,或者在有些试验中,要重点考察某个(或某些)因素需要多取几个水平,这时就会遇到水平数不同的正交试验设计.在这种情况下,通常有三种解决方法:一是直接选用合适的混合型正交表;二是采用拟水平法;三是采用拟因素法.我们现在只讨论第一种方法,即使用混合型正交表 进行正交试验设计.)(21knmL例 7-2 某油炸膨化食品的体积与油温、物料
19、含水量及油炸时间有关,为确保产品质量,提出工艺要求。现通过正交试验设计寻求理想的工艺条件。一. 试验方案设计1.确定试验指标本试验的指标为油炸膨化食品的体积,体积越大越好.2.挑因素、选水平、制定因素水平表根据专业知识,制定因素水平表如 7-4 所示,因素 A 取 4 个水平,因素 B 和 C 各取 2 个水平,所以属于水平数不相等的正交试验设计.表 7-4 因素水平表水平 因素 油炸温度(C)A物料含水量(%)B油炸时间(s)C12342102202302402.04.030403.选正交表、设计表头、编制试验方案本试验宜选用 L8(4124)正交表安排试验,表头设计时,把 A 因素放在第一
20、列,其余两个因素可随意安排在四个二水平列中,比如依次排在第二、三列中,把所安排因素的各列的水平数字后标上相应因素的具体水平值,即得出试验方案,如表 7-5 所示.按表 7-5 试验方案实施后,所得试验结果列于表 7-5 中的最后一列.表 7-5 试验方案及结果分析油温 A 含水量 B 时间 C试验号1 2 3 4 5体积 xi(cm3/100g)123456781(210)12(220)23(230)34(240)41(2.0)2(4.0)1212121(30)2(40)1221211221122112212112210.0208.0215.0230.0251.0247.0238.0230.0
21、K1K2K3K4418.0445.0498.0468.0914.0915.0902.0927.0123K4209.0222.5249.0234.0228.5228.75225.5231.75R 40.0 0.25 6.2525.46 0.355 8.875=1829.0二. 试验结果分析1. 计算各列各水平下的 K、 及 R_由于各列的水平数不完全相同,所以 K 和 的计算略有差异._第 1 列: 由于有四个水平数,所以要计算四个 K 与 ,每个 K 由_二个数据相加得到,因此 =K/2._K例如:0.4.290.4 0.29.4182/,18111_ RKKAA第 2、3 列:由于只有两个水
22、平,所以只要计算两个 K 与 ,每个 K_由四个数据相加得到,因此 =K/4._例如:25.0875.2.4/91/ 0.9143811_RKB按上述方法计算出各列各水平下的 K、 以及 R 值,列于表 7-5_中.2. 计算 R 的折算值 R(极差 R 的折算)当因素的水平数相同时,因素的主次顺序完全由 R 决定.但当因素的水平数不同时,直接比较 R 是不行的.这是因为,若两个因素对试验指标有影响,一般来说,水平数多的因素极差可能大一些.因此,要用一个系数把极差 R 折算后才能作比较.极差的折算公式如下:rd式中 -折算后的极差;R-因素的极差;r-该因素每个水平试验的重复数,r= ;mnd
23、-折算系数,与因素的水平数有关,其值见表 7-6。表 7-6 折算系数表 Rd水平数 m 2 折算系数 d 0.71 0.52 0.45 0.40 0.37 0.35 0.34 0.32 0.31本例中,的折算如下: 875.425.6710306 CBAR计算结果列于表-中.3.根据 R大小确定因素的主次顺序主 -次A C B即油炸温度对实验指标的影响最大,其次是油炸时间,而物料含水量的影响最小。4.画出因素指标趋势图,如图 7-4 所示(p146)5.选各因素的最优水平及最优水平组合比较各因素各水平下的 值(本例中 越大越好) ,并参考因素_K_指标趋势图,得出最优水平组合为 A3B2C2
24、或 A3B1C2,即油炸温度 230摄氏度,油炸时间 40 秒,物料含水量对试验指标影响很小,故取 2%或4%都可以,视具体情况而定。由表 7-5 可见,若最优水平组合 A3B1C2,则该试验即表中的第 5号试验,实验指标值即膨化体积为 251.0 3/100g,为表中所列最大值;若最优水平组合为 A3B2C2,则需再实施一次该水平组合下的试验,作为验证。7.4 考察交互作用的正交试验设计及极差分析一、交互作用的概念 前面介绍的正交试验设计与试验结果的分析方法,都是指因素间没有(或不考虑)交互作用的情况,实际上,在许多试验中,不仅因素对指标有影响,而且因素之间还会联合搭配起来对指标产生影响。所
25、以,因素对试验产生的总效果,是由每一个因素对试验的单独作用再加上各个因素之间的搭配作用决定的。这种因素间的联合搭配对试验指标产生的影响作用,称为交互作用。例如,我们要考虑化学反应的温度(A)与时间(B)对产品收率的影响,温度和时间都取二个水平,即 和 。在各 AiBj组12A12B合条件的平均产品收率,可能有如下三种情况:(1)不论 B 因素取哪个水平,A 2水平下收率总比 A1水平高 10;同样,不论 A 因素取哪个水平,B 2水平下的收率总比 B1水平下高5。在这种情况下,一个水平的好坏或好坏程度不受另一个因素水平的影响,这种情况称为因素 A 与 B 之间无交互作用。(2)在 B1水平下
26、A2比 A1的收率高,但在 B2水平下,A 1比 A2的收率高。这种一个因素水平的好坏或好坏程度受到另一因素水平制约的情况,称为因素 A 由于因素 B 存在交互作用,一般用 AB 表示。(3)不论 B 因素取哪个水平,A 2水平的收率总比 A1水平下高,但高的程度不等,这也说明因素 A 与 B 存在交互作用。(1) A 与 B 间无交互作用(平行线)(2) A 与 B 间有交互作用(AB)A1 A2B1 75 85B2 80 90A1 A2B1 75 85B2 80 65A1 A2B1 75 85B2 80 95(3)A 与 B 间存在交互作用(AB)图 7-4 A 与 B 间的交互作用情况事
27、实上,因素之间总是存在着交互作用的,这是客观存在的普遍现象,只不过交互作用的程度不同而已。一般的,当交互作用很小时,就认为不存在交互作用。因素间的交互作用对试验指标的影响,可能是正的,也可能是负的。有人说:“中国人一个人像一条龙,三个人像一条虫;日本人一个人像一条虫,三个人像一条龙。 ”这说明中国人之间的交互作用常常产生负面效应。 (一个和尚挑水喝,二个和尚抬水喝,三个和尚没水喝。团结就是力量,集体主义精神)在试验设计中,表示因素 A、B 间的交互作用记作 AB,称作一级交互作用;表示因素 A、B、C 之间的交互作用记作 ABC,称作二级交互作用;依次类推,还有三级、四级交互作用。二级和二级以
28、上的交互作用称为高级交互作用。在试验设计中,通常忽略高级交互作用。2交互作用的处理原则处理交互作用的总原则是,将交互作用当作因素看待,并将交互作用安排在能考察交互作用的正交表的相应列上(表头设计) ,它们对试验指标的影响情况都可以分析清楚,而且计算非常简便。但交互作用又与试验因素不同,主要表现在:(1)用于考察交互作用的列不影响试验方案及其实施;(2)一个交互作用并不一定只占正交表的一列,而是占有(m-1)p列。即表头设计时,交互作用所占正交表的列数与因素水平 m 和交互作用的级数 p 有关,并且 m 和 p 越大,交互作用所占列数也就越多。例如,二水平因素的各级交互作用均只占一列,即(m-1
29、) p=(2-1)p=1;对于三水平因素, (m-1) p=(3-1)p=2p,显然一级交互作用占两列(2 1=2) ,二级交互作用占四列(2 2=4)对于交互作用的具体处理原则是:(1)忽略高级交互作用;(2)有选择的考虑一级交互作用;正是由于忽略可以忽略的交互作用,才使正交试验法具有减少试验次数的优点。(3)试验因素尽量取二个水平因为二水平因素的各级交互作用均只占一列,所以选取二水平可以减少交互作用所占列数和减少试验次数。二、考虑交互作用的正交试验设计方法例 7-4 用石墨炉原子吸收分光光度法测定食品中的铅,为了提高测定灵敏度,希望吸光度越大越好,今欲研究影响吸光度的因素,确定最佳测定条件
30、。1. 试验方案设计(1) 确定试验指标(2) 挑因素、选水平、制定因素水平表(根据专业知识,制定出的因素水平表见 7-10,此处略。 )(3)选正交表 选正交表时,一定要把交互作用看成因素,同试验因素一并加以考虑。所选正交表试验号的大小,应能放下所有要考察的因素及交互作用,并且最好有 12 列空列,用以评价试验误差。本例是三因素二水平试验,对于二水平因素,交互作用AB,AC 和 BC 都各占正交表一列, 加上 A(灰化温度) 、 B(原子化温度) 、C(灯电流)各需一列 ,共需六列。查附表7(p329)可知,选用 L8(2 7)最合适。(4)表头设计表头设计时,各因素及其交互作用不能任意安排
31、,必须严格按照交互作用表(see p329 附表 7)进行安排 。这是考虑交互作用的正交试验设计的一个重要特点,也是其试验方案设计的关键一步。每张标准正交表都附有一张交互作用表(见附表 7) ,用于表头设计 。正交表 L8(2 7)的交互作用表 7-11(p151) 。表中所有数字均为列号,括号里的数字表示各因素所占的列。任意两个括号列纵横所交的数字,即为这两个括号列所表示的因素的交互作用列。例如,第 1 列和第 2 列间的交互作用列是第 3 列;第 1 列与第 4 列之间的交互作用列是第 5 列;第 2 列与第 4 列之间的交互作用列是第 6 列;等等。于是,就可把试验因素以及所要考察的交互
32、作用安排在正交表的相应列上,进行表头设计。对本例,可将因素 A 和 B 分别排在第 1、2 列上,则 AB 必须排在第 3 列上;再将 C 排在第 4 列上,而 AC 必须排在第 5 列上,而 BC 必须排在第 6 列上,第 7 列为空列。表头设计见表 7-13。表 7-13 表头设计因素 A B AB C AC BC列号 1 2 3 4 5 6 7表头设计的一个重要原则是避免混杂。所谓混杂,是指在正交表的同一列中,安排了两个或两个以上的因素或交互作用。这样,就无法区分同一列中的这些不同因素或交互作用对试验指标的影响效果。为了避免混杂,在表头设计中应优先安排主要因素和涉及交互作用的因素,而不涉
33、及交互作用的因素应放在后面安排。又如,某试验要用 L8(2 7)正交表考察 A、B、C、D 四个因素和交互作用 BC 与 CD。则在表头设计时应优先安排涉及交互作用的因素 B、C、D,因为 A 不涉及交互作用,所以可以放在后面安排。将 B 和 C 分别排在第 1、2 列,则由交互作用表可知,BC 只能排在第 3 列;再在第 4 列排上 D,则 CD 只能排在第 6 列;现在还剩下第 5、7 列供排因素 A,因为第 5 列反映的是 BD(这里不考虑) ,所以将 A 排在第 7 列。这样安排可避免因素的混杂。表头设计结果如表 7-12 所示。表 7-12 表头设计因素 B C BC D CD A列
34、号 1 2 3 4 5 6 7(5)编制试验方案表头设计完成后,将正交表安排有因素各列的水平数字,加注相应因素的具体水平值,即构成试验方案。 (应该指出的是,交互作用不是具体的因素,而只是因素间的联合搭配作用,故无所谓水平问题。 )安排交互作用的各列对试验方案及试验的具体实施不产生任何影响,但在计算和分析试验结果时要用到它。本例试验方案见表 7-14(p153).表 7-14 试验方案及结果分析A B AB C AC BC试验号 1 2 3 4 5 6 7吸光度xi123456781(300)1112(700)2221(1800)12(2400)21122112222111(8)2(10)12
35、12121212212112211221122121120.2420.2240.2660.2580.2360.2400.2790.276K1K20.991.0310.9421.0791.0211.001.0230.9981.0240.9971.0121.0091.0191.002120.24750.25780.23550.26980.25530.25000.25580.24950.25600.24930.25300.25230.25480.2505R 0.0103 0.0343 0.0053 0.0063 0.0067 0.0007=2.0212、试验结果的极差分析按表 7-14 试验方案实施
36、后(试验顺序完全随机化) ,将试验结果(吸光度)也列于表 7-14 中,然后用极差分析法进行计算与分析。(1) 计算 K、 和 R计算方法与前面介绍的相同,需要注意的是交互作用与因素一样看待,交互作用列也要计算出 K、 和 R 的值。见表 7-14。(2) 确定因素的主次顺序根据 R 值的大小,把因素和交互作用一起排主次顺序:主-次:B、A、AC、C、AB、BC(3)确定各因素的优水平根据 值的大小,确定出各因素的优水平为 A2、B 2、C 1。K(4)确定最优搭配和最优水平组合在有交互作用的情况下,不能只根据各因素的单独作用,即各因素的优水平确定最优组合,还要考虑交互作用显著的因素间的优搭配
37、。综合考虑因素的优水平和交互作用的优搭配,确定最优组合。为了判断优搭配,需要计算交互作用显著的两个因素的不同搭配所对应的试验指标平均值,列出二元表(又称搭配表) 。在本例中B、A、AC 是比较重要的因素,AB 和 BC 是次要因素,所以 B可直接选取 B 的优水平 B2,不必考虑搭配问题;因素 A 和交互作用AC 对试验结果影响较大,必须认真考虑其搭配问题,为此列出AC 的二元表,如表 7-15 所示。表 7-15 因素 A、C 二元表(搭配表)CA C1 C2A1A2(0.2420.266)/20.255(0.2360.279)/20.2575(0.2240.258)/20.241(0.24
38、00.276)/20.258在表 7-15 中的搭配计算依据是,将表 7-14 中 A 和 C 都取某一水平的试验数据相加并平均后,填入表 7-15 中对应的某一栏中。如表7-14 中第 1、3 号试验表示 A1C1,将其指标值相加并平均后填入表7-15 中对应的 A1C1栏内。A 1C2、A 2C1 和 A2C2三种水平搭配的平均指标值也同样填入表中。显然,A 2C2的指标值(吸光度)最高,为优搭配,另外,A 的优水平也是 A2,与 AC 的搭配不矛盾。综上所述,本例的最优水平组合为 A2B2C2,即灰分温度 700,原子化温度 2400,灯电流为10mA 时,吸光度值最大,测定灵敏度最高。
39、讨论:注意,上述分析结论与试验结果有矛盾!从表 7-14 中可见,优水平组合 A2B2C2试验,就是第 8 号试验,指标值为 0.276;而 A2B2C1试验,即第 7 号试验的指标值为 0.279,略大于第 8 号试验。为此,可再次重复第 7 号和第 8 号试验,以便最后确定最优组合是A2B2C1,还是 A2B2C2。因此,分析试验结果所用到的最优组合,未必绝对“最优” ,只能说是“较优水平组合” 。 (吸光度 0.276 和 0.279也许是分析仪器的误差所引起的差别!)7.5 食品感观指标的处理方法(略,请自学)定性-定量作业:1、将例 7-2 中表 7-5 的试验结果进行变换。即 = 15 ixi,然后进行试验结果分析。2、将例 7-2 中表 7-14 的试验结果进行变换。即=0.5 0.1,然后进行试验结果分析。ixi