1、双曲线的 简单几何性质(1),1.双曲线的标准方程:,形式一: (焦点在x轴上,(-c,0)、 (c,0),形式二:(焦点在y轴上,(0,-c)、(0,c)其中,一、复习回顾:,o,Y,X,关于X,Y轴, 原点对称,(a,0),(0,b),(c,0),A1A2 ; B1B2,|x|a,|y|b,F1,F2,A1,A2,B2,B1,2.椭圆的图像与性质:,2、对称性,一、研究双曲线 的简单几何性质,1、范围,关于x轴、y轴和原点都是对称的.,x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y),二、讲授新课:,3、顶点,(1)
2、双曲线与对称轴的交点,叫做双曲线的顶点,4、离心率,离心率。,ca0,e 1,e是表示双曲线开口大小的一个量,e越大开口越大!,(1)定义:,(2)e的范围:,(3)e的含义:,5、渐近线,焦点在x轴上的双曲线的几何性质,双曲线标准方程:,Y,X,1、,范围:,xa或x-a,2、对称性:,关于x轴,y轴,原点对称。,3、顶点:,A1(-a,0),A2(a,0),4、轴:实轴 A1A2 虚轴 B1B2,A1,A2,B1,B2,5、渐近线方程:,6、离心率:,e=,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c)F1(0,-c),如何记忆双曲线的渐进线方程?,例1、求下列双曲线的渐近线方程 (1)4x29y2=36, (2)25x24y2=100.,2x3y=0,5x2y=0,更多资源,例3、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为20m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).,A,A,0,x,C,C,B,B,y,