1、单因素试验 的方差分析,在工农业生产和科研活动中,我们经常遇到这样的问题:影响产品产量、质量的因素很多,例如影响农作物的单位面积产量有品种、施肥种类、施肥量等许多因素。我们要了解这些因素中哪些因素对产量有显著影响,就要先做试验,然后对测试结果进行分析,作出判断。方差分析就是分析测试结果的一种方法。,引 言,基 本 概 念,试验指标试验结果。,可控因素在影响试验结果的众多因素中,可人为控制的因素。,水平可控因素所处的各种各种不同的状态。每个水平又称为试验的一个处理。,单因素试验如果在一项试验中只有一个因素改变,其它的可控因素不变,则该类试验称为单因素试验。,引例,例1 (灯丝的配料方案优选)某灯
2、泡厂用四种配料方案制成的灯丝生产了四批灯泡,在每批灯泡中作随机抽样,测量其使用寿命(单位:小时),数据如下:,灯泡的使用寿命试验指标,灯丝的配料方案试验因素(唯一的一个),四种配料方案(甲乙丙丁)四个水平,因此,本例是一个四水平的单因素试验。,引 例,用X1,X2,X3,X4分别表示四种灯泡的使用寿命,即为 四个总体。假设X1,X2,X3,X4相互独立,且服从方差 相同的正态分布,即XiN(i,2)(i=1,2,3,4),本例问题归结为检验假设 H0:1= 2= 3= 4 是否成立,我们的目的是通过试验数据来判断因素 A 的不同水平对试验指标是否有影响。,设 A 表示欲考察的因素,它的 个不同
3、水平,对应的指标视作 个总体 每个水平下,我们作若干次重复试验: (可等重复也可不等重复),同一水平的 个结果,就是这个总体 的一个样本:,单因素试验的方差分析,单因素试验资料表,纵向个体间的差异称为随机误差(组内差异),由试验造成;横向个体间的差异称为系统误差(组间差异),由因素的不同水平造成。,由于同一水平下重复试验的个体差异是随机误差,所以设:,其中 为试验误差,相互独立且服从正态分布,线性统计模型,单因素试验的方差分析的数学模型,具有方差齐性。,相互独立,从而各子样也相互独立。,首先,我们作如下假设:,即,令 (其中 )称为一般平均值。,称为因素A的第 个水平 的效应。,则线性统计模型
4、变成,于是检验假设:,等价于检验假设:,显然有:,整个试验的均值,考察统计量,经恒等变形,可分解为:,其中,反映的是各水平平均值偏离总平均值的偏离程度。,如果H0 成立,则SSA 较小。,若H0成立,则,总离差平方和,见书P168,其中,这里,反映的是重复试验种随机误差的大小。,表示水平Ai的随机误差; 表示整个试验的随机误差,若假设 成立,则,由P106定理5.1可推得:,将 的自由度分别记作,则,(记 ,称作均方和),(各子样同分布),则,(记 ,称作均方和),对给定的检验水平 ,由,得H0 的拒绝域为:,F 单侧检验,结论:方差分析实质上是假设检验,从分析离差平方和入手,找到F统计量,对
5、同方差的多个正态总体的均值是否相等进行假设检验。单因素试验中两个水平的均值检验可用第七章的T检验法。,思考:为什么此处只做单侧检验?,(1)若 ,则称因素的差异极显著(极有统计意义),或称因素A的影响高度显著,这时作标记 ;,约 定,(2)若 ,则称因素的差异显著(差异 有统计意义),或称因素A的影响显著,作标记 ;,(3)若 ,则称因素A有一定影响,作标记( );,(4)若 ,则称因素A无显著影响(差异无统计意义)。,注意:在方差分析表中,习惯于作如下规定:,简便计算公式:,其中,同一水平下观测值 之和,所以观测 值之和,例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。,解:,解:,不同的饲料对猪的体重的影响极有统计意义。,列方差分析表,例2的上机实现步骤,1、输入原始数据列,并存到A,B,C列;,2、选择StatANOVAone-way(unstacked),不同的饲料对猪的体重的影响极有统计意义。,定理 在单因素方差分析模型中,有,如果H0不成立,则,所以,,即H0不成立时,,有大于1的趋势。,所以H0为真时的小概率事件应取在F值较大的一侧。,