收藏 分享(赏)

中南财经政法大学研修学院自考本科.ppt

上传人:weiwoduzun 文档编号:4175967 上传时间:2018-12-13 格式:PPT 页数:80 大小:3.88MB
下载 相关 举报
中南财经政法大学研修学院自考本科.ppt_第1页
第1页 / 共80页
中南财经政法大学研修学院自考本科.ppt_第2页
第2页 / 共80页
中南财经政法大学研修学院自考本科.ppt_第3页
第3页 / 共80页
中南财经政法大学研修学院自考本科.ppt_第4页
第4页 / 共80页
中南财经政法大学研修学院自考本科.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、数字图像处理,第十一章 数字图像处理中的 滤波器设计,CH11 图像处理中的滤波器设计,序言 一、低通滤波器法 二、高通滤波器法 三、带通和带阻滤波器法 四、同态滤波 五、维纳估计器 六、匹配检测器 要点总结 上机实习,CH11 图像处理中的滤波器设计,序言,1 低通滤波器法,1)原理 2)理想低通滤波器 3)巴特沃思低通滤波器 4)指数低通滤波器,1 低通滤波器法,1)原理,Lenna,加入高斯噪声的Lenna,1 低通滤波器法,Lenna的谱图像,有高斯噪声Lenna的谱图像,1 低通滤波器法,结论:图像的边缘和其他尖锐跳跃(如噪声)对傅立叶变换的高频分量有很大贡献; 方法:通过一个线性系

2、统,频域上对一定范围高频分量进行衰减能够达到平滑化; 这种线性系统称为低通滤波器法。,1 低通滤波器法,2)理想低通滤波器(ILPF) 定义:以D0为半径的圆内所有频率分量无损的通过,圆外的所有频率分量完全衰减。D0又称为截止频率。,注意D0的物理意义,1 低通滤波器法,H(u,v),1 低通滤波器法,信号能量ET :将u,v=0,1,N-1的每一点(u,v)的能量相加起来得到傅立叶信号能量ET 。,如何确定D0?,1 低通滤波器法,举例:观察有高斯噪声Lenna图像的傅立叶谱和不同半径下的谱图像的信号能量。,1 低通滤波器法,D0=5,有高斯噪声的Lenna图像,1 低通滤波器法,D0=10

3、,D0=20,1 低通滤波器法,D0=50,有高斯噪声的原Lenna图像,1 低通滤波器法,问题: (1)模糊 对于半径为5,包含了全部90%的能量。但严重的模糊表明了图片的大部分边缘信息包含在滤波器滤去的10%能量之中。随着滤波器半径增加,模糊的程度就减少。 模糊产生的原理:根据卷积定理ILPF的空域图像,1 低通滤波器法,频域上的滤波相当于空域 上的卷积。即相当复杂图像 中每个象素点 简单复制过程。 因此导致图像 的模糊。当D 增加时环半径 也增加,模糊 程度减弱。,1 低通滤波器法,(2)振铃 ILPF空域上冲激响应卷积产生两个现象: 一是边缘渐变部分的对比度; 二是边缘部分加边(rin

4、ging)。 其原因是冲激响应函数的多个过零点。,1 低通滤波器法,1 低通滤波器法,3)巴特沃思低通滤波器(BLPF),1 低通滤波器法,1 低通滤波器法,D0=10,1 低通滤波器法,D0=20,D0=50,1 低通滤波器法,巴特沃斯低通滤波器的优点是: 一、模糊大大减少。因为包含了许多高频分量; 二、没有振铃现象。因为滤波器是平滑连续的。,1 低通滤波器法,4)指数低通滤波器(elpf)性质:比相应的巴特沃思滤波器要稍微模糊,但没有振铃现象。,1 低通滤波器法,1 低通滤波器法,D0=10,1 低通滤波器法,D0=20,D0=50,2 高通滤波器法,1)原理 2)理想高通滤波器 3)巴特

5、沃思高通滤波器 4)指数高通滤波器 5)高斯差分滤波器,2 高通滤波器法,1)原理 图像锐化处理的目的是使模糊图像变得清晰。 通常图像模糊是由于图像受到平均或积分运算,因此图像锐化采用微分运算。 在频域处理上,即采用高通滤波器法。 注意:进行处理的图像必须有较高的信噪比,否则图像锐化后,图像信噪比会更低。,2 高通滤波器法,2)理想高通滤波器(IHPF),2 高通滤波器法,2 高通滤波器法,3)巴特沃思高通滤波器(BHPF),2 高通滤波器法,2 高通滤波器法,4)指数高通滤波器(EHPF),2 高通滤波器法,2 高通滤波器法,原图,IHPF,BHPF,EHPF,2 高通滤波器法,有噪声的图,

6、采用BHPF高通滤波后,信噪比变小。,2 高通滤波器法,5)高斯差分滤波器(DoG,Difference of Gaussian),2 高通滤波器法,2 高通滤波器法,3 带通和带阻滤波器法,1)理想的带通滤波器,3 带通和带阻滤波器法,3 带通和带阻滤波器法,2)理想的带阻滤波器,3 带通和带阻滤波器法,3 带通和带阻滤波器法,3)通用带通滤波器,3 带通和带阻滤波器法,3 带通和带阻滤波器法,4)巴特沃斯带通滤波器,3 带通和带阻滤波器法,4)伪彩色处理 空域上的灰度彩色变换函数,3 带通和带阻滤波器法,3 带通和带阻滤波器法,频域上的伪彩色处理(举例) 低通滤波器:以围绕图像能量90的圆

7、作为截止点,半径为5,傅立叶反变换后作为红色分量; 带通滤波器:以围绕图像能量83的圆作为截止点,带宽以围绕图像能量93的圆,半径为4到20,傅立叶反变换后作为兰色分量; 高通滤波器:以围绕图像能量95的圆作为截止点,半径为50,傅立叶反变换后作为绿色分量;,3 带通和带阻滤波器法,4 同态滤波,目的:正常图象是在均匀光强度情况下获得的图象,实际上光照射是不均匀,或光强范围动态太大。 方法:为解决光照不均匀的影响,可用同态滤波来解决。 原理: 光照下景物图象的模型 f(x,y)=fi(x,y)fr(x,y) fi(x,y):随空间位置不同的光强分量 fr(x,y):景物反射到眼睛的图象 f(x

8、,y):最终获得的图象,4 同态滤波,4 同态滤波,分析 fi(x,y): 缓慢变化,频率集中在低频部分 fr(x,y): 包含景物各种信息,高频分量丰富 处理选择一低通滤波函数H(u,v)在频域空间处理,4 同态滤波,5 维纳估计器,1)目的 从加性噪声中最优的恢复未知信号。,5 维纳估计器,2)维纳估计器 (1)目标:已知噪声的能量谱,输入和输出,求未被噪声污染的原信号。 (2)最优准则:采用实际输出与期望输出的均方差最小。,5 维纳估计器,(3)使用冲激响应h(t)描述均方误差,5 维纳估计器,(4)最小化MSE MSE最小即滤波器最优的充分必要条件:维纳滤波器使得输入/输出的互相关函数

9、等于信号/(信号+噪声)的互相关函数。,5 维纳估计器,(5)维纳滤波器设计,5 维纳估计器,5 维纳估计器,3)举例 问题:取得无噪声信号的样本不可能。 替代方案:取得噪声信号样本的能量谱。 (1)信号和噪声互不相关,0频率傅立叶函数幅值,5 维纳估计器,4)维纳去卷积 目标:信号s(t)既受到f(t)线性系统模糊,又受到加性噪声源n(t)的污染。 设计滤波器g(t)既能去卷积,又能抑制噪声信号。,5 维纳估计器,6 匹配检测器,1)概念 观察信号x(t)是由原信号m(t)受加性噪声n(t)污染形成,经过冲激响应k(t)的线性滤波器得到输出y(t)。 目标:判断在噪声污染信号中是否存在信号m

10、(t)。 输出可由两个分量组成:,6 匹配检测器,6 匹配检测器,2)匹配检测器 (1)最优化准则,6 匹配检测器,(2)最大化 值根据Schwartz不等式(3)匹配检测器的传递函数,6 匹配检测器,3)举例 (1)白噪声,6 匹配检测器,物理意义 匹配检测器即需要检测信号的反转,这样卷积后即等于需要检测信号的自相关,因此在出现信号时匹配检测器输出最大值。,6 匹配检测器,(2)矩形脉冲滤波器 根据以上讨论,矩形脉冲滤波器仍然是一个矩形脉冲,这样在出现矩形脉冲时,输出峰值。但是输出信号并不等于矩形脉冲。,要点总结,1、三种低通滤波器的函数定义及在图像平滑中的初步应用; 2、理解理想低通滤波器

11、中模糊和振铃现象; 3、三种高通滤波器的函数定义及在图像锐化中的初步应用; 4、伪彩色应用及空域和频域转换方法; 5、同态滤波的思想和步骤; 6、维纳估计器的思想和步骤,及其主要应用; 7、匹配检测器的思想和步骤,及其主要应用。,上机实习,1、采用MATLAB软件编制低通滤波器(ILPF、BLPF、ELPF),观察各自去噪效果; 2、采用MATLAB软件编制高通滤波器(IHPF、BHPF、EHPF),观察图像锐化效果(模糊图像可通过photoshop软件blur滤镜产生); 3、使用空域和频域转换的方法编写伪彩色转换程序; 4、完成必做实验八。在5月27日前完成.,MATLAB中的信号处理工具

12、箱,一、卷积 1、一维卷积C=conv(A,B) 2、二维卷积C=conv2(A,B)返回矩阵C大小为(ma+mb-1)*(na+nb-1)C=conv2(,shape) 3、n维卷积C=convn(A,B)C=convn(A,B,shape),MATLAB中的信号处理工具箱,二、离散傅立叶变换 1、计算离散傅立叶变换矩阵(DFT)A=dftmtx(n)其中n为采样点,返回W阵。例:t=0:0.01:1;x=sinc(2*pi*5*t);A=dftmtx(length(t);y=x*A;subplot(1,2,1),plot(t,x)subplot(1,2,2),plot(t,y),MATLA

13、B中的信号处理工具箱,2、一维快速离散傅立叶变换y=fft(x)x为离散取样值,y为返回的离散傅立叶变换例:t=(0:1/99:1);x=sin(2*pi*15*t)+sin(2*pi*40*t);y=fft(x);m=abs(y);f=(0:length(y)-1)*99/length(y);plot(f,m),MATLAB中的信号处理工具箱,3、频谱移中函数y=fftshift(x)当x为向量时,返回直接将x中的左右两部分交换;当x为矩阵时,将x的左上、右下和右上、左下四部分两两交换。例:计算方波信号的FFT。x=1 1 1 1 0 0 0 0;y1=fft(x);y2=fftshift(

14、y1);subplot(1,2,1),plot(abs(y1)subplot(1,2,2),plot(abs(y2),MATLAB中的信号处理工具箱,4、傅立叶反变换y=ifft(x)x为取样值例:计算方波的傅立叶反变换x=1 1 1 1 0 0 0 0;y=fftshift(ifft(x);subplot(1,2,1),plot(x)subplot(1,2,2),plot(abs(y),MATLAB中的信号处理工具箱,5、二维快速傅立叶变换二维FFT算法流程:1)按行求图像矩阵的一维FFT;2)将中间结果转置;3)按列求转置矩阵的一维FFT;B=fft2(A)A=ifft2(B)由于舍入误差的原因,ifft(fft(A)并不完全等于A。,MATLAB中的信号处理工具箱,例1:伪彩色处理; 例2:快速卷积。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 金融证券 > 财经资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报