1、1.3.2直线的极坐标方程,教学目标:,理解曲线的极坐标方程概念,掌握直线的极坐标方程,重点:曲线的极坐标方程的概念,根据条件求直线的极坐标方程,难点:直线的一般极坐标方程及其反用,新课引入:,思考:在平面直角坐标系中,1、过点(3,0)且与x轴垂直的直线方程为 ;过点(3,3)且与x轴垂直的直线方程为,x=3,x=3,2、过点(a,b)且垂直于x轴的直线方程为_,x=a,特点:所有点的横坐标都是一样,纵坐标可以取任意值。,答:与直角坐标系里的情况一样,求曲线的极坐标方程就是找出曲线上动点的坐标与之间的关系,然后列出方程(,)=0 ,再化简并讨论。,怎样求曲线的极坐标方程?,例题1:求过极点,
2、倾角为 的射线的极坐标方程。,分析:,如图,所求的射线上任一点的极角都是 ,其,极径可以取任意的非负数。故所求,直线的极坐标方程为,新课讲授,1、求过极点,倾角为 的射线的极坐标方程。,易得,思考:,2、求过极点,倾角为 的直线的极坐标方程。,和前面的直角坐标系里直线方程的表示形式比较起来,极坐标系里的直线表示起来很不方便,要用两条射线组合而成。原因在哪?,为了弥补这个不足,可以考虑允许通径可以取全体实数。则上面的直线的极坐标方程可以表示为,或,例题2求过点A(a,0)(a0),且垂直于极轴的直线L的极坐标方程。,解:如图,设点,为直线L上除点A外的任意一点,连接OM,在 中有,即,可以验证,
3、点A的坐标也满足上式。,求直线的极坐标方程步骤,1、据题意画出草图;,2、设点 是直线上任意一点;,3、连接MO;,4、根据几何条件建立关于 的方程, 并化简;,5、检验并确认所得的方程即为所求。,练习:设点P的极坐标为A ,直线 过点P且与极轴所成的角为 ,求直线 的极坐标方程。,解:如图,设点,为直线 上异于的点,连接OM,,在 中有,即,显然A点也满足上方程。,例题3设点P的极坐标为 ,直线 过点P且与极轴所成的角为 ,求直线 的极坐标方程。,则 由点P的极坐标知,由正弦定理得,显然点P的坐标也是它的解。,小结:直线的几种极坐标方程,1、过极点,2、过某个定点,且垂直于极轴,3、过某个定点,且与极轴成一定的角度,作业: P15 1(2)、2(1)(2),预习下节内容,