1、2.2.3 两条直线的交点坐标【教学目标】1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.2.当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.4.以“特殊”到“一般 ”,培养学生探索事物本质属性的精神,以及运动变化的相互联系的观点.【重点难点】教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.【课时安排】1 课时【教学过程】导入
2、新课作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系.课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.推进新课新知探究提出问题已知两直线 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如何判断这两条直线的关系?如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?解下列方程组(由学生完成 ):() ; ( ) ; () .如何根据两直线的方程系数之间的关系来判定两直线的位置关系?当 变化时,方程 3x+4y-2+(
3、2x+y+2)=0 表示什么图形,图形有什么特点?求出图形的交点坐标.讨论结果:教师引导学生先从点与直线的位置关系入手,看下表,并填空.几何元素及关系 代数表示点 A A(a,b)直线 l l:Ax+ By+C=0点 A 在直线上直线 l1 与 l2 的交点 A学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组的关系.设两条直线的方程是 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线 l1 和 l2 的交点,因此 ,两条直线是否有交点,就
4、要看这两条直线方程所组成的方程组 是否有唯一解.()若二元一次方程组有唯一解,则 l1 与 l2 相交;()若二元一次方程组无解,则 l1 与 l2 平行;()若二元一次方程组有无数解,则 l1 与 l2 重合.即直线 l1、l 2 联立得方程组(代数问题 ) (几何问题)引导学生观察三组方程对应系数比的特点:() ;( ) ;() .一般地,对于直线 l1:A1x+B1y+C1=0,l 2:A2x+B2y+C2=0(A1B1C10,A2B2C20),有方程组 .注意:(a)此关系不要求学生作详细的推导 ,因为过程比较繁杂,重在应用.(b)如果 A1,A2,B1,B2,C1,C2 中有等于零的
5、情况,方程比较简单,两条直线的位置关系很容易确定.(a)可以用信息技术,当 取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点.(b)找出或猜想这个点的坐标,代入方程,得出结论.(c)结论:方程表示经过这两条直线 l1 与 l2 的交点的直线的集合.应用示例例 1 求下列两直线的交点坐标,l 1:3x +4y-2=0,l2:2x+y +2=0.解:解方程组 得 x=-2,y=2,所以 l1 与 l2 的交点坐标为 M(-2,2).变式训练求经过原点且经过以下两条直线的交点的直线方程.l 1:x-2y+2=0,l2:2x-y-2=0.解:解方程组
6、x-2y+2=0,2x-y-2=0,得 x=2,y=2,所以 l1 与 l2 的交点是(2,2).设经过原点的直线方程为 y=kx,把点(2,2)的坐标代入以上方程,得 k=1,所以所求直线方程为 y=x.点评:此题为求直线交点与求直线方程的综合运用 ,求解直线方程也可应用两点式.例 2 判断下列各对直线的位置关系.如果相交,求出交点坐标.(1)l1:x-y=0 ,l 2:3x+3 y-10=0.(2)l1:3x-y+4=0,l 2:6x-2 y-1=0.(3)l1:3x+4y-5=0,l 2:6x+8y -10=0.活动:教师让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁
7、,然后再进行讲评.解:(1)解方程组 得所以 l1 与 l2 相交,交点是( , ).(2)解方程组(1)2-(2)得 9=0,矛盾,方程组无解,所以两直线无公共点,l 1l 2.(3)解方程组(1)2 得 6x+8y-10=0.因此, (1)和(2)可以化成同一个方程,即(1)和(2)表示同一条直线,l 1 与 l2 重合.变式训练判定下列各对直线的位置关系,若相交,则求交点.(1)l1:7x+2y-1=0,l2:14x+4y-2=0.(2)l1:( - )x+y=7,l2:x+( + )y-6=0.(3)l1:3x+5y-1=0,l2:4x+3y=5.答案:(1)重合,(2) 平行,(3)
8、相交,交点坐标为(2,1).例 3 求过点 A(1,4) 且与直线 2x3y5=0 平行的直线方程.解法一:直线 2x3y 5=0 的斜率为- ,所求直线斜率为- .又直线过点 A(1,4),由直线方程的点斜式易得所求直线方程为 2x3y10=0.解法二:设与直线 2x3y 5=0 平行的直线 l 的方程为 2x3ym=0,l 经过点 A(1,4),213(4)m=0. 解之,得 m=10.所求直线方程为 2x3y10=0.点评:解法一求直线方程的方法是通法,须掌握.解法二是常常采用的解题技巧.一般地,直线 Ax ByC =0 中系数 A、B 确定直线的斜率.因此,与直线 AxByC=0 平行
9、的直线方程可设为 Ax Bym=0,其中 m 待定.经过点 A(x0,y 0),且与直线 AxByC=0 平行的直线方程为 A(xx 0)B(y y 0)=0.变式训练求与直线 2x3y 5=0 平行,且在两坐标轴上截距之和为 的直线方程.答案:2x+3y-1=0.拓展提升问题:已知 a 为实数,两直线 l1:ax+y+1=0,l2:x+y-a=0 相交于一点,求证:交点不可能在第一象限及 x 轴上.分析:先通过联立方程组将交点坐标解出,再判断交点横、纵坐标的范围.解:解方程组 ,得 .若 0,则 a1.当 a1 时, 0,此时交点在第二象限内.又因为 a 为任意实数时,都有 a2+110,故
10、 0.因为 a1(否则两直线平行,无交点),所以交点不可能在 x 轴上,交点( )不在 x 轴上.课堂小结本节课通过讨论两直线方程联立方程组来研究两直线的位置关系,得出了方程系数比的关系与直线位置关系的联系.培养了同学们的数形结合思想、分类讨论思想和转化思想.通过本节学习,要求学生掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.当两条直线相交时,会求交点坐标.注意语言表述能力的训练.通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.以“特殊”到“ 一般”,培养探索事物本质属性的精神,以及运动变化的相互联系的观点.作业课本习题 3.3 A 组 1、2、3, 选做 4 题.