1、减数分裂性原细胞做准备,初母细胞先联会; 排板以后同源分,从此染色不成对;次母似与有丝同,排板接着点裂匆; 姐妹道别分极去,再次质缢个西东;染色一复胞两裂,数目减半同源别; 精质平分卵相异,其他在此暂不提。2、碱基互补配对DNA,四碱基,A 对 T,G 对 C,互补配对双链齐; RNA,没有 T,转录只好 U 来替,AUGC 传信息;核糖体,做机器,tRNA 上三碱基,能与密码配对齐。3、遗传判定核、质基因,特点不同。父亲有,子女没有,母亲有子女才有,基因在细胞质;父亲有,子女也有,基因在细胞核;基因分显隐,判断要细心无中生有,此有必为隐;显性世代相传无间断;基因所在染色体,有常有X 还有 Y
2、,母病子必病,女病父难逃,是 X 隐;父病女必病,是 X 显; 传儿不传女,是伴 Y;此外皆由常。 1、原核生物的种类 蓝色细线织(支)毛衣 4、色素层析即蓝藻、细菌、放线菌、支原体、衣原体 (从上到下)胡黄 ab 三、微量元素:新 铁 臂 阿 童 木 , 猛! 一、动物的个体发育歌诀 :Zn Fe B () Cu Mo Mn 受精卵分动植极,胚胎发育四时期, 五、植物矿质元素中的微量元素: 卵裂囊胚原肠胚,组织器官分化期。木 驴 碰 裂 新 铁 桶,猛! 外胚表皮附神感,内胚腺体呼消皮, Mo Cl B Ni Zn Fe Cu Mn 中胚循环真脊骨,内脏外膜排生肌。5、植物有丝分裂 前中后末
3、由人定 (各期人为划定) , 仁消膜逝两体现 (核膜、核仁消失,染色体、纺锤体出现。 ) 二、植物有丝分裂 : 赤道板处点整齐 (着丝点排列在赤道板处) 仁膜消失现两体, 赤道板上排整齐姐妹分离分极去 (染色单体分开,移向两极。 ) 一分为二向两极, 两消两现建新壁膜仁重现两体失 (核膜、核仁重新出现,染色体、纺锤体消失)6、光合作用光合作用两反应, (光反应、暗反应)光暗交替同步行; (光反应为暗反应基础,同时进行)光暗各分两不走, (光反应、暗反应都包括两步)光为暗还供氢能; (光反应为暗反应还原 C3 化合物提供氢和能量)色素吸光两用途, (色素吸收的光能有两方面用途)解水释氧暗供氢;
4、(分解水释放氧气,为暗反应提供还原剂氢)ADP 变 ATP,光变不稳化学能; (光能转变成 ATP 中不稳定的化学能)光完成行暗反应,后还原来先固定;(在光反应的基础上进行暗反应,先固定 CO2 再还原 C3)二氧化碳由孔入,C5 结合 C3 生; (CO2 由气孔进入,与 C5 化合物结合生成 C3 化合物)C3 多步被还原,需酶需能又需氢;(C3 化合物的还原需要酶、能量、还原剂氢,经历多步反应)还原产生有机物,能量储存在其中; (C3 化合物被还原生成储存能量的有机物)C5 离出再反应,循环往复不曾停。 (C3 化合物被还原,分离出 C5 化合物,继续固定 CO2)六、食物的消化与吸收:
5、1.淀粉消化始口腔 2.唾液肠胰葡萄糖; 3.蛋白消化从胃始 4.胃胰肠液变氨基 5.口腔食道不吸收 6. 胃吸酒水是少量 7.小肠吸收六营养 8.水无维生进大肠十、DNA 结构特点口诀: 双链螺旋结构 极性反向平行 碱基互补配对 排列顺序无穷语句: 自由水和结合水是可以相互转化的,如血液凝固时,部分自由水转化为结合水。自由水/结合水的值越大,新陈代谢越活跃。自由水是细胞内的良好溶剂。 2、能源物质系列:生物体的能源物质是糖类、脂类和蛋白质;糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质;生物体内的主要贮藏能量的物质是脂肪;动物细胞内的主要贮藏能量的物质是糖元;植物细胞内的主要贮
6、藏能量的物质是淀粉;生物体内的直接能源物质是 ATP;生物体内的最终能量来源是太阳能。 3、糖类、脂类、蛋白质、核酸四种有机物共同的元素是 C、H、O 三种元素,蛋白质必须有 N,核酸必须有N、P;蛋白质的基本组成单位是氨基酸,核酸的基本组成单位是核苷酸。 (例: DNA、叶绿素、纤维素、胰岛素、肾上腺皮质激素在化学成分中共有的元素是 C、H、O) 。 4、蛋白质的四大特点:相对分子质量大;分子结构复杂; 种类极其多样;功能极为重要。 5、蛋白质结构多样性:氨基酸种数不同, 氨基酸数目不同, 氨基酸排列次序不同,肽链空间结构不同。 6、蛋白质分子结构的多样性决定了蛋白质分子功能多样性,概括有:
7、构成细胞和生物体的重要物质如肌动蛋白; 催化作用:如酶; 调节作用:如胰岛素、生长激素; 免疫作用:如抗体,抗原(不是蛋白质) ;运输作用:如红细胞中的血红蛋白。 注意:蛋白质分子的多样性是由核酸控制的。 7、一切生命活动都离不开蛋白质,蛋白质是生命活动的承担者。核酸是一切生物的遗传物质,是遗传信息的载体,存在于一切细胞中(不是存在于一切生物中) ,对于生物的遗传、变异和蛋白质的合成具有重要作用。 8、组成核酸的基本单位是核苷酸,是由一分子磷酸、一分子核糖、一分子含氮碱基组成。组成 DNA 的核苷酸叫做脱氧核苷酸,组成 RNA 的核苷酸叫做核糖核苷酸。 1、地球上的生物,除了病毒以外,所有的生
8、物体都是由细胞构成的。(生物分类也就有了细胞生物和非细胞生物之分)。 2、细胞膜由双层磷脂分子镶嵌了蛋白质。蛋白质可以以覆盖、贯穿、镶嵌三种方式与双层磷脂分子相结合。磷脂双分子层是细胞膜的基本支架,除保护作用外,还与细胞内外物质交换有关。 3、细胞膜的结构特点是具有一定的流动性;功能特性是选择透过性。如:变形虫的任何部位都能伸出伪足,人体某些白细胞能吞噬病菌,这些生理的完成依赖细胞膜的流动性。 4、物质进出细胞膜的方式:a、自由扩散:从高浓度一侧运输到低浓度一侧;不消耗能量。例如:H2O、O2、CO2、甘油、乙醇、苯等。 b、主动运输:从低浓度一侧运输到高浓度一侧;需要载体;需要消耗能量。例如
9、:葡萄糖、氨基酸、无机盐的离子(如 K+ ) 。c、协助扩散:有载体的协助,能够从高浓度的一边运输到低浓度的一边,这种物质出入细胞的方式叫做协助扩散。如:葡萄糖进入红细胞。 5、线粒体:呈粒状、棒状,普遍存在于动、植物细胞中,内有少量 DNA 和 RNA 内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶,线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约 95%来自线粒体。 6、叶绿体:呈扁平的椭球形或球形,主要存在植物叶肉细胞里,叶绿体是植物进行光合作用的细胞器,含有叶绿素和类胡萝卜素,还有少量 DNA 和 RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体
10、内的基质中,含有光合作用需要的酶。 7、内质网:由膜结构连接而成的网状物。功能:增大细胞内的膜面积,使膜上的各种酶为生命活动的各种化学反应的正常进行,创造了有利条件。 8、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。 9、高尔基体:由扁平囊泡、小囊泡和大囊泡组成,为单层膜结构,一般位于细胞核附近的细胞质中。在植物细胞中与细胞壁的形成有关,在动物细胞中与分泌物的形成有关,并有运输作用。 10、中心体:每个中心体含两个中心粒,呈垂直排列,存在动物细胞和低等植物细胞,位于细胞核附近的细胞质中,与细胞的有丝分裂有关。 11、液泡:是细胞质中的泡
11、状结构,表面有液泡膜,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。 12、与胰岛素合成、运输、分泌有关的细胞器是:核糖体、内质网、高尔基体、线粒体。在胰岛素的合成过程中,合成的场所是核糖体,胰岛素的运输要通过内质网来进行,胰岛素在分泌之前还要经高尔基体的加工,在合成和分泌过程中线粒体提供能量。 13、在真核细胞中,具有双层膜结构的细胞器是:叶绿体、线粒体;具有单层膜结构的细胞器是:内质网、高尔基体、液泡;不具膜结构的是:中心体、核糖体。另外,要知道细胞核的核膜是双层膜,细胞膜是单层膜,但它们都不是细胞器。植物细胞有细
12、胞壁和是叶绿体,而动物细胞没有,成熟的植物细胞有明显的液泡,而动物细胞中没有液泡;在低等植物和动物细胞中有中心体,而高等植物细胞则没有;此外,高尔基体在动植物细胞中的作用不同。 14、细胞核的简介:(1)存在绝大多数真核生物细胞中;原核细胞中没有真正的细胞核;有的真核细胞中也没有细胞核,如人体内的成熟的红细胞。 (2)细胞核结构:a、核膜:控制物质的进出细胞核。说明:核膜是和内质网膜相连的,便于物质的运输;在核膜上有许多酶的存在,有利于各种化学反应的进行。b、核孔:在核膜上的不连贯部分;作用:是大分子物质进出细胞核的通道。c、核仁:在细胞周期中呈现有规律的消失(分裂前期)和出现(分裂末期) ,
13、经常作为判断细胞分裂时期的典型标志。d、染色质:细胞核中易被碱性染料染成深色的物质。提出者:德国生物学家瓦尔德尔提出来的。组成主要由 DNA 和蛋白质构成。染色质和染色体是同一种物质在不同时期的细胞中的两种不同形态!(3)细胞核的功能:是遗传物质储存和复制的场所;是细胞遗传特性和代谢中心活动的控制中心。 15、原核细胞与真核细胞的主要区别是有无成形的细胞核,也可以说是有无核膜,因为有核膜就有成形的细胞核,无核膜就没有成形的细胞核。这里有几个问题应引起注意:(1)病毒既不是原核生物也不是真核生物,因为病毒没有细胞结构。(2)原生动物( 如草履虫、变形虫等)是真核生物。(3)不是所有的菌类都是原核
14、生物,细菌(如硝化细菌、乳酸菌等)是原核生物,而真菌(如酵母菌、霉菌、蘑菇等) 是真核生物。 16、在线粒体中,氧是在有氧呼吸第三个阶段两个阶段产生的氢结合生成水,并放出大量的能量;光合作用的暗反应中,光反应产生的氢参与暗反应中二氧化碳的还原生成水和葡萄糖;蛋白质是由氨基酸在核糖体上经过脱水缩合而成,有水的生成。 1、细胞的分化注意点:a、发生时期:是一种持久性变化,它发生在生物体的整个生命活动进程中,胚胎时期达到最大限度。b、细胞分化的特性:稳定性、持久性、不可逆性、全能性。c、意义:经过细胞分化,在多细胞生物体内就会形成各种不同的细胞和组织;多细胞生物体是由一个受精卵通过细胞增殖和分化发育
15、而成,如果仅有细胞增殖,没有细胞分化,生物体是不能正常生长发育的。 2、细胞的癌变特点:a、癌细胞的特征:能够无限增殖;形态结构发生了变化;癌细胞表面发生了变化。b、致癌因子:物理致癌因子:主要是辐射致癌;化学致癌因子:如苯、坤、煤焦油等;病毒致癌因子:能使细胞癌变的病毒叫肿瘤病毒或致癌病毒。c、机理是癌细胞是由于原癌基因激活,细胞发生转化引起的。d、预防:避免接触致癌因子;增强体质,保持心态健康,养成良好习惯,从多方面积极采取预防措施。 3、细胞衰老的主要特征:a水分减少,细胞萎缩,体积变小,代谢减慢;b、有些酶活性降低(细胞中酪氨酸酶活性降低会导致头发变白) ;c色素积累(如:老年斑) ;
16、d呼吸减慢,细胞核增大,染色质固缩,染色加深;e细胞膜通透功能改变,物质运输能力降低。 4、从理论上讲,生物体的每一个活细胞都应该具有全能性。在生物体内,细胞并没有表现出全能性,而是分化成为不同的细胞、器官,这是基因在特定的时间、空间条件下选择性表达的结果,当植物细胞脱离了原来所在植物体的器官或组织而处于离体状态时,在一定的营养物质、激素和其他外界的作用条件下,就可能表现出全能性,发育成完整的植株。1、ATP 的结构简式:ATP 是三磷酸腺苷的英文缩写,结构简式:APPP,其中:A 代表腺苷,P 代表磷酸基,代表高能磷酸键,代表普通化学键。注意:ATP 的分子中的高能磷酸键中储存着大量的能量,
17、所以 ATP 被称为高能化合物。这种高能化合物在水解时,由于高能磷酸键的断裂,必然释放出大量的能量。这种高能化合物形成时,即高能磷酸键形成时,必然吸收大量的能量。2、ATP 与 ADP 的相互转化:在酶的作用下,ATP 中远离 A 的高能磷酸键水解,释放出其中的能量,同时生成 ADP 和 Pi;在另一种酶的作用下,ADP 接受能量与一个 Pi 结合转化成 ATP。ATP 与 ADP 相互转变的反应是不可逆的,反应式中物质可逆,能量不可逆。ADP 和 Pi 可以循环利用,所以物质可逆;但是形成 ATP 时所需能量绝不是 ATP 水解所释放的能量,所以能量不可逆。 (具体因为:(1)从反应条件看,
18、ATP 的分解是水解反应,催化反应的是水解酶;而 ATP 是合成反应,催化该反应的是合成酶。酶具有专一性,因此,反应条件不同。 (2)从能量看,ATP 水解释放的能量是储存在高能磷酸键内的化学能;而合成 ATP 的能量主要有太阳能和化学能。因此,能量的来源是不同的。 (3)从合成与分解场所的场所来看:ATP 合成的场所是细胞质基质、线粒体(呼吸作用)和叶绿体(光合作用) ;而ATP 分解的场所较多。因此,合成与分解的场所不尽相同。 ) 3、ATP 的形成途径 : 对于动物和人来说, ADP 转化成 ATP 时所需要的能量,来自细胞内呼吸作用中分解有机物释放出的能量。对于绿色植物来说,ADP 转化成 ATP 时所需要的能量,除了来自呼吸作用中分解有机物释放出的能量外,还来自光合作用。 4、ATP 分解时的能量利用:细胞分裂、根吸收矿质元素、肌肉收缩等生命活动。5、ATP 是新陈代谢所需能量的直接来源。