1、高分子材料在生活中的重要性1 定义高分子材料:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。2 来源高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19 世纪 30 年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着
2、人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。3 高分子材料的现状4 分类高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19 世纪 30 年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870 年,美国人 Hyatt 用硝化纤维素 和樟脑制得的赛璐珞 塑料,是有划时代意义的一种人造高分子材料。1907 年出现合成高分子酚醛树脂
3、,真正标志着人类应用化学合成方法有目的的合成高分子材料的开始。1953 年,德国科学家 Zieglar 和意大利科学家 Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。高分子纤维分为天然纤维和化学纤维。
4、前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。高分子基复合材
5、料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如
6、此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。按高分子主链结构分类, 碳链高分子,杂链高聚物, 元素有机高聚物碳链高分子:分子主链由 C 原子组成,如:PP、PE、PVC杂链高聚物:分子主链由 C、O、N 、P 等原子构成。如:聚酰胺、聚酯、硅油元素有机高聚物:分子主链不含 C 原子,仅由一些杂原子组成的高分子。如:硅橡胶其它分类按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。4 名称和用途一般将高分子材料按特性分为五类,即橡胶、纤维、塑料、胶粘剂、涂料。橡胶是一类线型
7、柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状,有天然橡胶和合成橡胶两种。天然橡胶的主要成分是聚异戊二烯;合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶丙烯酸酯橡胶、聚氨酯橡胶、硅橡胶、氟橡胶等等。天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的各种轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、暖水袋等都是以橡胶为主要原料制造的,国防上使用的飞机、大
8、炮、坦克,甚至尖端科技领域里的火箭、人造卫星、宇宙飞船、航天飞机等都需要大量的橡胶零部件,目前,世界上部分或完全用天然橡胶制成的物品已达 7 万种以上,其中轮胎的用量要占天然橡胶使用量的一半以上。相比于天然橡胶,合成橡胶中有少数品种的性能与其相似,大多数与天然橡胶不同,但两者都是高弹性的高分子材料,一般均需经过硫化和加工之后,才具有实用性和使用价值。合成橡胶在 20 世纪初开始生产,从 40 年代起得到了迅速的发展。合成橡胶一般在性能上不如天然橡胶全面,但它具有高弹性、绝缘性、气密性、耐油、耐高温或低温等性能,因而广泛应用于工农业、国防、交通及日常生活中。拿丁基橡胶来说,其用于制作各种轮胎的内
9、胎、无内胎轮胎的气密层、各种密封垫圈,在化学工业中作盛放腐蚀性液体容器的衬里、管道和输送带,农业上用作防水材料。再如合成橡胶中的佼佼者硅橡胶,它具有良好的电绝缘性、耐氧抗老化性、耐光抗老化性以及防霉性、化学稳定性,且无味无毒,不怕高温、严寒,因此在现代医学中广泛发挥了重要作用,如制造的硅橡胶防噪音耳塞、硅橡胶胎头器吸引器、硅橡胶人造血管、硅橡胶鼓膜修补片,此外还有硅橡胶人造气管、人造肺、人造骨、硅橡胶十二指肠管等,功效都十分理想。另一种广泛应用的高分子材料便是纤维。纤维分为天然纤纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大
10、、形变能力小、模量高,一般为结晶聚合物。纤维在各行各业中可算得上是“热门人物” ,其最早用于纺织业中,日常生活中的衣物用品大多采用纤维做材料不仅穿得舒服且御寒防晒。而如今纤维更大的作用早已不仅停留在日常穿着,它在军事、医用、环保等领域也已有举足轻重的作用。如碳纳米管可用作电磁波吸收材料,用于制作隐形材料、电磁屏蔽材料、电磁波辐射污染防护材料和吸波材料,由于其物质的可降解性,在医用上,聚乳酸或者脱乙酰甲壳素纤维制成的外科缝合线,在伤口愈合后自动降解并吸收,直接避免手术后的拆线;在环保上,聚乳酸作为可完全生物降解性塑料,越来越受到人们重视。在建筑领域上防渗防裂纤维可以增强混凝土的强度和防渗性能,纤
11、维技术与混凝土技术相结合,可研制出能改善混凝土性能,提高土建工程质量的钢纤维以及合成纤维,前者对于大坝、机场、高速公路等工程可起到防裂、抗渗、抗冲击和抗折性能,后者可以起到预防混凝土早期开裂,在混凝土材料制造初期起到表面保护。另外,随着生物科技的发展,一些纤维的特性可以派上用场,如类似肌肉的纤维可制成“人工肌肉” 、 “人体器官”等,是人体组织良好的替代材料。当代生活中,有一种高分子材料更是占据了材料的半壁江山,那就是塑料。塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和
12、热塑性塑料;按用途又分为通用塑料和工程塑料。塑料的应用在生活中随处可见,小到塑料袋、各种机械器具,大到工程、航空,毫不夸张的说,塑料已经成为世界的一部分。抛开其他用途,这里对其最新的应用做以介绍:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗” ,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调折叠薄板。这样可以形成三维立体结构,
13、组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。用塑料制造车顶为设计者提供了更大的设计空间。他们可以创造三维几何形状,将玻璃液化合物推至最高限值。胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。胶粘剂的产生很好的解决了聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接,尤其对现在工业、工程做出了巨大的贡献。小到家用三秒胶、波纹板、纸袋、标签、胶带、邮票,大到建筑用胶,工业用胶,甚至在飞机机翼或尾翼和机身的粘接中也不乏胶粘剂的身影。与传统的编织织布法、金属的焊接法以及铆接、螺栓或钉接等机械联结法相比,胶粘剂粘接法更快、更经
14、济,并能将不同材料结合在一起,而且当粘接两种金属时,胶粘剂能隔开它们以防腐蚀,同时又可降低装配体的疲劳破坏,并比机械联结更轻更强,因此胶粘剂在生活中的应用也有了渐渐取代传统联接法德趋势。高分子涂料是以多种高分子聚合材料为主要成膜物质,添加触变剂、防流挂剂、防沉淀剂、增稠剂、流平剂、防老剂等添加剂和催化剂,经过特殊工艺加工而成的合成高分子水性乳液防水涂膜,具有优良的高弹性和绝佳的防水性能。该产品无毒、无味,安全环保。涂膜耐水性、耐碱性、抗紫外线能力强,具有较高的断裂延伸率,拉伸强度和自动修复功能。其中以 AST 合成高分子防水涂料为代表。品种有聚氨酯防水涂料、丙烯酸酯防水涂料、环氧树脂防水涂料和
15、有机硅防水涂料等。高分子涂料绿色环保、耐老性强,粘结力强,渗透性好,应用范围非常广阔。涂料在日常生活中的作用经常被人忽视。事实上,许多人都认为油漆和涂料只起着墙面维护作用,体现着消费者的审美观。实际上,不只作为一层外表覆盖物而存在作为家装的必需品,油漆和涂料对一些日常家居用品起着保护作用,有助于延长它寿命。别小看那只有千分之几英寸的油漆层或涂料层,却可以为建筑物和建材部品提供有效维护,防止它腐蚀磨损,免受高温和低温的抚慰,减小化学品和紫外线、水分和微生物对它有利影响。涂料还以一种特别的方式,维护着我环境。坚持建筑物外墙的温度,有效节约能源;风力发电中起着必不可少的作用,有助于减少二氧化碳的排放
16、量。高性能涂料的使用生命周期较长,可以在实现环境效益最大化的同时实现生态负担最小化。涂料的可持续发展是环境维护重要内容,也是建筑涂料发展方向。这种涂料的粘附性和耐久性可以有效防止建筑物腐蚀。外表涂有特殊涂料层的种子的种植周期比一般种子的种植周期长。有利于培育更多的杂交农作物。这一涂料技术使得农民可以同时在一块田地里种植两种农作物,而且低成本、高收益。土地需求量减小,有利于提高生产力,改善土壤质量。用于风叶和风力涡轮机塔的涂料对促进风电能源市场的发展起着重要作用。一些极端的大陆性气候和海洋性气候环境地区。使得电话和网络顺利地实现通信信号的传输。这一涂料技术可以实现约 390 万人的连通,光学纤维
17、涂层通过维护玻璃纤维。减少 8.4 亿加仑的汽油消耗和 1400 万吨二氧化碳排放。使其免受环境中细菌的侵蚀和金属的腐蚀。内部的涂料层可以作为维护屏障,食品罐头所用的涂料对于食品平安来说意义重大:可以维护食品。防止罐头中的金属元素侵蚀食物,特别是酸性罐装食物;外部的涂料层可以有效防止罐头由于临时流露在环境中受到细菌侵蚀而引起的食物蜕变。5 高分子材料在日常生活中的应用3.1 衣3.1.1 棉布 棉纤维主要组成物质是纤维素。纤维素是天然高分子化合物,化学结构式 (C6H10O5)n。 正常成熟的棉纤维素含量约为 94%。此外含有少量多缩戊糖、 蜡质、蛋白质、脂肪、水溶性物质、灰分等伴生物。由于棉
18、纤维具有许多优良经济性状,使之成为最主要的纺织工业原料。棉布是各类棉纺织品的总称。它多用来制作时装、休闲装、内衣和衬衫。轻松保暖,柔和贴身、吸湿性、透气性甚佳。 3.1.2 麻布 麻布是以大麻、亚麻、苎麻、黄麻、剑麻、蕉麻等各种麻类植物纤维制成的一种布料。一般被用来制作休闲装、工作装,目前也多以其制作普通的夏装。强度极高、吸湿、导热、透气性甚佳。 3.1.3 丝绸 丝绸是以蚕丝为原料纺织而成的各种丝织物的统称。与棉布一样,它的品种很多,个性各异。它可被用来制作各种服装,尤其适合用来制作女士服装。轻薄、合身、柔软、滑爽、透气、色彩绚丽,富有光泽,高贵典雅,穿著舒适。3.1.4 呢绒 以纯净的绵羊
19、毛为主,亦可混用一定比例的毛型化学纤维或其他天然纤维。 呢绒又叫毛料,它是对用各类羊毛、羊绒织成的织物的泛称。它通常适用以制作礼服、西装、大衣等正规、高档的服装。防皱耐磨,手感柔软,高雅挺括,富有弹性,保暖性强。 3.1.5 皮革 皮革是经脱毛和鞣制等物理、化学加工所得到的已经变性不易腐烂的动物皮。革是由天然蛋白质纤维在三维空间紧密编织构成的,其表面有一种特殊的粒面层,具有自然的粒纹和光泽,手感舒适。它多用以制作时装、冬装。又可以分为两类:一是革皮,即经过去毛处理的皮革。二是裘皮,即处理过的连皮带毛的皮革。轻盈保暖,雍容华贵。3.1.6 化纤是化学纤维的简称。它是利用高分子化合物为原料制作而成
20、的纤维的纺织品。通常它分为人工纤维与合成纤维两大门类。色彩鲜艳、质地柔软、悬垂挺括、滑爽舒适。虽可用以制作各类服装,但总体档次不高,难登大雅之堂。3.1.7 混纺 是将天然纤维与化学纤维按照一定的比例,混合纺织而成的织物,可用来制作各种服装。它既吸收了棉、麻、丝、毛和化纤各自的优点,又尽可能地避免了它们各自的缺点,而且在价值上相对较为低廉,H 型和圆台型设计造型。挺爽型面料线条清晰有体量感,能形成丰满的服装轮廓。常见有棉布、涤棉布、灯芯绒、亚麻布和各种中厚型的毛料和化纤织物等,该类面料可用于突出服装造型精确性的设计中,例如西服、套装的设计。布料以其物理性能不同可分为:绝缘及防静电,绝缘材料通常
21、用在日常生活中,而防静电布料主要用于制造防静电工作服,是适用于电子、光学仪器、制药、微生物工程、精密仪器等行业的具有无尘和抗静电性能的特种工作服,其衣料一般是嵌织导电丝的合成纤维织物,是为防止衣服的静电积聚,适用于对静电敏感场所或火灾或爆炸危险场所穿用。3.2 住 3.2.1 应用 应用于非结构材料,可有以下几种:装饰板材;各种管材和异性材,水管、门窗框等;建筑防水材料,屋顶膜;建筑涂料;建筑保温、隔声材料; 应用于结构材料,可有以下几种:桥梁,如人行天桥等;轻结构建筑 物,玻璃钢、聚合物混凝土等;混凝土的增强筋等。 3.2.2 塑料 3.2.2.1、热塑性塑料 聚乙烯(PE) 分低密度、中密
22、度高密度三种。密度较小、化学稳定性、耐水性和耐寒性良好、耐热性差、易燃烧和光老化。建材制品有各种管道、防水膜等。 聚丙烯(PP)刚性较大、耐热性好(加热到 150不变形)。强度、弹性模量、硬度都高、对高频电的绝缘性能好。建材制品有各种给水管道、防水膜等。聚氯乙烯(PVC) 常见有软、硬质聚氯乙烯二种,抗拉强度、刚度、硬度较大,有良好的耐水性、耐油性、耐化学药品侵蚀性和阻燃性。建材制品有各种给水管道、防水材料、门窗框等。 聚四氟乙烯塑料俗称塑料王,具有非常优良的耐高、低温性能,可在-180260 范围内长期使用, 几乎耐所有化学药品 ,摩擦系数极低,仅为 0.04。它对其他物质不粘附,不吸水,电
23、性能优良,良好的耐水、耐老化性能。缺点是强度低。 聚酰胺塑料俗称尼龙,具有突出的耐磨性和自润滑性,冲击韧性好,强度高,耐蚀性和成型性好,缺点是耐热性差、工作温度不能超过 100, 导热性差, 吸水性高。主要用于制作纤维。 聚甲基丙烯酸甲脂俗称有机玻璃,透光率达 92%,比重只是无机玻璃的一半。强度、冲击韧性都优于无机玻璃,抗稀酸、稀碱、润滑油和碱氢燃料的作用,在自然条件下老化发展缓慢。缺点是硬度低,易擦伤。用作装饰板材。3.2.2.2 热固性塑料 酚醛塑料(PF)由于制备条件不同,有热塑性和热固性二类。它们耐磨性好,绝缘性、耐热性、耐蚀性也都很好。缺点是性脆,不耐碱。用于制作电工器材(如插头、
24、开关等) ,装饰材料、隔声隔热材料等。热塑性酚醛树脂还可配制油漆、胶粘剂、涂料和防腐蚀用胶泥等。环氧塑料(EP) 是环氧树脂加固化剂、填料和增强材料后形成的热固性塑料,常用固化剂有胺类和酸酐类化合物。它们强度较高,韧性较好,尺寸稳定性高,耐久性好,耐热、耐寒,具有优良的电绝缘性能。缺点是稍有毒性。用于制备增强塑料、泡沫塑料、浇注塑料、粘结剂和涂料等。 聚酯塑料强度和表面耐磨性较高;可在 100C 下长期使用;添加增塑剂可以大幅度提高其韧性;有较好的耐水性,但耐碱和溶剂的性能较差,不耐氧化性介质,固化过程中有较大收缩变形。主要用于玻璃钢和树脂混凝土,可以制造很多种建材制品,如波形瓦、管材、人造石
25、材等。 有机硅塑料(SI)具有优良的耐高温( 500600C )和防火性;良好的电绝缘性和憎水性;耐腐蚀能力很强;粘结强度高,可用于粘结金属材料和非金属材料;但其机械强度较低。主要有硅油、硅树脂及其硅塑料和硅橡胶。可制成耐热、耐水、耐腐蚀及电绝缘性能均好的模压塑料、层压塑料和泡沫塑料制品,还可用作粘结剂、防水涂料、混凝土外加剂等。3.2.2.3 增强塑料 由树脂,纸、短切纤维或纤维织物、片状材料等增强材料组成。它的特点是机械强度高,稳定性好,各向异性,成形工艺多样。可用于轻质结构材料、屋顶膜、装饰材料和电绝缘材料,混凝土的增强筋和修补材料等。 结构工程中,应用较多的是玻璃纤维(GRP ,俗称玻
26、璃钢)或碳纤维增强塑料。 3.2.2.4 纤维增强塑料 纤维增强聚合物作为预应力束,代替钢材:其中纤维包括玻璃纤维、芳纶纤维或碳纤维;其抗拉强度高、徐变小、弹性模量适中、抗腐蚀性能好;纤维增强聚合物作为加固材料:用碳纤维薄片代替钢板,放置在需要加固的部位并涂刷聚合物粘结成整体。 3.2.3 橡胶 3.2.3.1 丁苯橡胶(SBR) 丁二烯与苯乙烯的共聚物,浅黄褐色的弹性体,密度为 0.910.97g/cm3,具有优良的电绝缘性,其弹性、耐磨性和抗老化性均优于天然橡胶,溶解性与天然橡胶相似,但耐热性、耐寒性、耐挠曲性和可塑性不如天然橡胶,脆化温度为50C ,最高使用温度为80 100C。 3.2
27、.3.2 丁腈橡胶(NBR) 丁二烯和丙烯腈的共聚物,为淡黄色的弹性体,密度随丙烯腈含量的增加而增大。耐热性、耐油性比天然橡胶好,抗臭氧能力强。但耐寒性不如天然橡胶和丁苯橡胶,且本较高。丁腈橡胶是一种耐油橡胶,可用来制造输油胶管、油料容器的衬里和密封胶垫,减震零件等。 3.2.3.3 氯丁橡胶(CR) 氯丁二烯的均聚物,为黑色或琥珀色的弹性体,密度为 1.23g/cm3。耐老化、耐臭氧、耐候性、耐油性、耐化学腐蚀性均比天然橡胶好。耐燃性好,粘结能力较高,脆化温度为3555C ,热分解温度为 230260C ,最高使用温度为 120150C 。可制造各种橡胶制品、胶粘剂和防水材料等。 3.2.3
28、.4 丁基橡胶(也称异丁橡胶 IIR) 异丁烯与少量异戊二烯的共聚物。它为无色的弹性体,密度约为 0.92g/cm3,透气性较低。它是耐化学腐蚀、耐老化、不透气性和电绝缘性最好的橡胶,且耐热性好,吸水率小,抗撕裂性能好,耐寒性好,脆化温度为79C ,最高使用温度为 150C。 但在常温下弹性小(只有天然橡胶的 1/4) ,粘性较差。可用于制造不透气的气囊、电气绝缘制品、化工设备的衬里和建筑防水材料等。 3.2.3.5 三元乙丙橡胶(EPDM) 乙丙橡胶是以乙烯、丙烯在溶液状态下共聚的无定形聚合物。密度为 0.85g/cm3 左右,是最轻的橡胶。电绝缘性和耐化学腐蚀性好,耐光、热、氧、臭氧的老化
29、性能优异,能在150C 下长期使用,最高使用温度为 200C。冲击弹性好,尤其是在低温下弹性保持较好,在57C 下变硬,77C 下变脆。在建筑上,乙丙橡胶可用于制造屋顶胶 板、窗户密封条和防水卷材等。目前,世界上有机高分子材料的研究正在不断地加强和深入。一方面,对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大。例如,塑料一般作为绝缘材料被广泛使用,但是近年来,为满足电子工业需求,又研制出具有优良导电性能的导电塑料导电塑料已用于制造电池等,并可望在工业上获得更广泛的应用。另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展,如仿生高分子材料、高分子智能材料等。这类高分子材料在宇航、建筑、机器人、仿生和医药领 域已显示出潜在的应用前景。总之,有机高分子材料的应用范围正在逐渐扩展, 高分子材料必将对人们的生产和生活产生越来越大的影响。