收藏 分享(赏)

归纳推理、类比推理(2课时教案).doc

上传人:jw66tk88 文档编号:4037301 上传时间:2018-12-05 格式:DOC 页数:5 大小:105KB
下载 相关 举报
归纳推理、类比推理(2课时教案).doc_第1页
第1页 / 共5页
归纳推理、类比推理(2课时教案).doc_第2页
第2页 / 共5页
归纳推理、类比推理(2课时教案).doc_第3页
第3页 / 共5页
归纳推理、类比推理(2课时教案).doc_第4页
第4页 / 共5页
归纳推理、类比推理(2课时教案).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第 1 页 共 5 页课 题:归纳推理课时安排:一课时 课 型:新授课教学目标:1.通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。教学重点:了解合情推理的含义,能利用归纳法进行简单的推理。教学难点:用归纳进行推理,做出猜想。教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”

2、两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。2、 三角形的内角和是 180,凸四边形的内角和是 360,凸五边形的内角和是 540由此我们猜想:凸边形的内角和是 (2)18n3、 2,33 ,由此我们猜想: amb( ,b均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)归纳推理的一般步骤: 对有限的资

3、料进行观察、分析、归纳 整理; 提出带有规律性的结论,即猜想; 检验猜想。 三、例题讲解:例 1 已知数列 na的通项公式 21()naN,12()()nf,试通过计算 ,(3)ff的值,推测出 ()fn的值。【学生讨论:】 (学生讨论结果预测如下)(1) 13()4fa2138242()()96f实验,观察 概括,推广 猜测一般性结论第 2 页 共 5 页123125(3)()()638faaf由此猜想, ()nf学生讨论:1)哥德巴赫猜想:任何大于 2 的偶数可以表示为两个素数的之和。2)三根针上有若干个金属片的问题。四、巩固练习:1、已知 1()()3fnnN,经计算: 35(2),(4

4、)2,(8),fff 63,f72,推测当 2时,有_.2、已知: 23si0i9si150, 222sin5i6sin15。观察上述两等式的规律,请你写出一般性的命题,并证明之。3、观察(1) tan1tan6ta0(2) 50175n51。由以上两式成立,推广到一般结论,写出你的推论。注:归纳推理的几个特点:1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上

5、.提出带有规律性的结论.五、教学小结:1.归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。2)从已知的相同性质中推出一个明确表述的一般命题(猜想) 。第 3 页 共 5 页课 题:类比推理教学目标:(一)知识与能力:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。(二)过程与方法:类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关

6、系就越相关,从而类比得出的结论就越可靠。(三)情感态度与价值观:1正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。2认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。教学重点:了解合情推理的含义,能利用类比进行简单的推理。教学难点:用类比进行推理,做出猜想。教具准备:与教材内容相关的资料。课时安排:1 课时教学过程:一问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路

7、是这样的:茅草是齿形的;茅草能割破手. 我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二教学活动我们再看几个类似的推理实例。例 1、试根据等式的性质猜想不等式的性质。等式的性质: 猜想不等式的性质:(1) a=ba+c=b+c; (1) aba+cb+c;(2) a=b ac=bc; (2) ab acbc;(3) a=ba2=b2;等等。 (3) aba 2b 2;等等。问:这样猜想出的结论是否正确?例 2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球弦截面圆直径大圆周长表

8、面积面积体积圆的性质 球的性质圆心与弦(不是直径)的中点的连线垂直于弦 球心与截面圆(不是大圆)的圆点的连线垂直于截面圆第 4 页 共 5 页与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点经过切点且垂直于切线的直线必经过圆心 经过切点且垂直于切面的直线必经过球心上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其

9、中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比) 简言之,类比推理是由特殊到特殊的推理类比推理的一般步骤: 找出两类对象之间可以确切表述的相似特征; 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; 检验猜想。即三.例题讲解:例 3.在平面上,设 ha,hb,hc是三角形 ABC 三条边上的高.P 为三角形内任一点,P 到相应三边的距离分别为 pa,pb,pc,我们可以得到结论:试通过类比,写出在空间中的类似结论.四.巩固提高:1(2001 年上海)已知两个圆x2+y2=1:与x2+(y-3)2=1,则由式减去式可得上述两圆的对称轴方程.将上述

10、命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为- -;2类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想直角三角形 3 个面两两垂直的四面体 C903 个边的长度 a, b, c 2 条直角边 a, b 和 1 条斜边 c PDF PDE EDF90 4 个面的面积 S1, S2, S3 和 S 3 个“直角面” S1, S2, S3 和 1 个“斜面” S观察、比较 联想、类推 猜想新结论1cbahp第 5 页 共 5 页五.课堂小结:1类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。2 类比推理的一般步骤:找出两类事物之间的相似性或者一致性。用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报