1、运算能力课程标准(2011 年版)中,对各学段的运算提出了明确的要求。其中第三学段:体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。运算不仅是数学课程中“数与代数”的重要内容,“图形与几何”“统计与概率”“综合与实践”也都与运算有着密切的联系。一、对运算能力的认识根据一定的数学概念、法则和定理,由一些已知量通过计算得出确定结果的过程,称为运算。能按照一定的程序与步骤进行运算,称为运算技能。不仅会根据法则、公式等正确的进行运算,而且理解运算的算理
2、,能根据题目条件寻求正确的运算途径,称为运算能力。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。二、运算能力的特征运算能力的主要特征正确、灵活、合理、简洁。首先,要保证运算的正确,为此必须要正确理解相关的概念、法则、公式和定理等数学知识,明确意识到实施运算的依据,然后,在适度训练、逐步熟悉的基础上,清楚的意识到实施运算中的算理。不断总结正反两方面的经验和教训,逐步减少在实
3、施运算中思考概念、法则、公式等的时间和精力,提高运算的熟练程度,以求运算顺畅,立力求避免错误。多题一解和一题多解在运算中十分普遍,即一般性与特殊性往往同时出现在实施运算的过程中,多题一解体现了运算的普适性,一题多解体现了运算的灵活性。二者的交替出现,相互比较,循环往复,不断优化,促使学生越来越感悟到:实施运算,解决问题,不仅要正确,而且要灵活、合理、简洁。估算也是一种重要的运算技能,估算能力也是运算能力的特征之一,课标在每一学段的学段目标和课程内容中,都强调了估算,并提出了具体的要求。随意我们要充分重视估算。进行估算需要经过符合逻辑的思考,需要有一定的依据,需要掌握一点的方法,积累一定的经验,
4、需要避免出现过大的误差,需要使估算结果尽量接近实际情境,能对实际问题做出合理的解释。所以在涉及估算的教学中,时间不能压缩,学生的活动要充分。三、运算能力的培养与发展运算能力的培养与发展是一个长期的过程,应伴随着数学知识的积累和深化,从简单到复杂、从具体到抽象,有层次的发展。运算能力的培养与发展应贯穿于师生共同参与数学活动的全过程中,并体现发展的适度性、层次性和阶段性。正确理解相关的数学概念,是逐步形成运算技能、发展运算能力的前提。原式能力的培养与发展不禁包括运算技能的逐步提高,还应包括运算思维的提升和发展,要经历如下过程:1、由具体到抽象第一学段:理解万以内的数,初步认识小数和分数,初步学习整
5、数的四则运算,以及简单的分数和小数的加减运算;第二学段:认识万以上的数,进一步学习整数的四则运算(包括混合运算),小数和分数的四则运算(包括混合运算),了解并初步应用运算律;第三学段:掌握有理数的加、减、乘、除、乘方及简单的混合运算;掌握合并同类项和去括号的法则;进行简单的整个办公室加、减、乘运算;利用乘法公式进行简单计算;进行简单的分式加、减、乘、除运算;了解二次根式(根号下仅限于数)加、减、乘、除运算,及简单的四则运算;解一元一次方程、可化为一元一次方程的分式方程;掌握代入消元法和加减消元法解二元一次方程组;用配方法、公式法、因式分解法解数字系数的一元二次方程;解数字系数的一元一次不等式。
6、无论是学习和掌握数与式的运算,还是解方程和解不等式的运算,一开始总是和具体事物相联系的,之后逐步脱离具体事物,抽象成数与式、方程与不等式的运算。直至高中阶段进行更为抽象的符号运算,如集合的交、并、补等运算,命题的或、且、非等运算。7 运算思维的抽象程度,是运算能力发展的主要特征之一。2、由法则到定理学习和掌握数与式的运算、解方程和捷豹但是的运算,在反复操练、相互交流的过程中,不仅会逐步形成运算技能,还会引发对“怎么算?”“怎么算的好?”“为什么要这样算?”等一系列问题的思考。这是有法则到算理的思考,是运算从操作的层面提升到思维的层面,这是运算发展的重要内容。课程标准规定了一系列与算理相关的内容
7、。如在第三学段:除了“理解有理数的运算律,能运用运算律简化运算”外,算理的内容好要求进一步强化,在学习方程解法之前,要求“掌握等式的基本性质”;在学习不等式解法正确,要求“探索不等式的基本性质”;为此课程标准提供了例 53:小丽去文具店买铅笔和橡皮。铅笔每只 0.5 圆,橡皮每块 0.4 元。小丽带了 2 元钱,能买几只铅笔、几块橡皮?在此例中,不仅给出了详细的解题方案和过程,还指出:这是一个求整数解的不等式问题,并且问题是开放的,通过列表具体计算,有助于学生直观理解不等式,对于嘈杂声,这个问题是生活常识,但希望学生能通过这个例子学会用数学的思维分式看待生活中的问题。在一元二次方程的内容中,课
8、程标准不禁设置了“能用配方法、公式法、因式分解法解数字系数的一元二次方程”,而且增加了“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等”“了解一元二次方程的根与系数的关系”等内容,表面不禁要学习和掌握解一元二次方程的运算方法,更要思考和领悟解一元二次方程的算理。3、由常量到变量函数在第三学段是重要的内容,函数概念的引入,运算对象从常量提升到变量。运算的内容更加丰富多彩,课程标准中不仅有:“能确定简单实际问题中函数自变量的取值范围,并会求出函数值”“会利用待定系数法确定一次函数的表达式”“会用配方法将数字系数的二次函数的不等式化为顶点式,并能由此得到二次函数图象的定点坐标”等直接
9、进行运算的内容;还包括与运算密切相关的内容,如“能结合图象对简单实际问题中的函数关系进行分析”“用适当的函数表示法刻画简单实际问题中变量之间的关系”“结合对函数关系的分析,能对变量的变化情况进行初步讨论”“根据一次函数的图象和表达式探索并理解图象的变化情况”“能根据已知条件确定反比例函数的表达式”“根据图象和表达式探索反比例函数图象的变化情况”“指导给定不共线三点的坐标可以确定一个二次函数。”由变量到常量,表明运算思维产生了新的飞跃,运算能力也发展到了一个新的高度。4、由单向思维到逆向、多向思维逆向思维是数学学习的一个特点。在第二学段,课程标准规定“在具体运算和解决简单实际问题的过程中,体会加
10、与减、乘与除的互逆关系。”在第三学段,又增加了乘方与开方的互逆关系。到高中阶段,更有指数与对数、微分与积分等混个小。运算的互逆关系,是逆向思维的重要表现形式之一。运算也是一种推理,在实施运算分析和解决问题的过程中,“由因导果”和“执果索因”的推理模式也是经常要用到的,表现为有效探索运算的条件与结论,已知与未知的相互联系及相互转化,思维方式是互逆的,更是相辅相成的。在实施运算的过程中,还会遇到多因素的情况,各个因素相互联系、相互制约、有相辅相成,更加需要不同的思维方向、不同的解题思路和不同的解题方法,通过你叫,嫁衣择优选用。这是运算思维达到一个新高度的重要标志,是运算能力的培养与发展的高级阶段。由于思维定势的消极作用,逆向思维和多向思维的难度较大,在实施运算的过程中,对分析运算条件,探究运算方向,选择运算方法,设计运算程序等各个环节都要引导学生进行周密的思考,力求使运算符合算理,达到正确熟练、灵活多样、合理简洁,实现运算思维的优化及运算能力的逐步提高。