收藏 分享(赏)

2018年全国二卷数学(含详解答案).doc

上传人:weiwoduzun 文档编号:4019441 上传时间:2018-12-05 格式:DOC 页数:9 大小:1.16MB
下载 相关 举报
2018年全国二卷数学(含详解答案).doc_第1页
第1页 / 共9页
2018年全国二卷数学(含详解答案).doc_第2页
第2页 / 共9页
2018年全国二卷数学(含详解答案).doc_第3页
第3页 / 共9页
2018年全国二卷数学(含详解答案).doc_第4页
第4页 / 共9页
2018年全国二卷数学(含详解答案).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、2018 年全国二卷数学一、选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的12iA43i5B43i5C34i5D34i52已知集合 2xyxyZ, , ,则 A中元素的个数为 A9 B8 C5 D43函数2exf的图像大致为 4已知向量 a, b满足 |1, ab,则 (2)abA4 B3 C2 D05双曲线2(0,)xyab的离心率为 3,则其渐近线方程为A yxB yxC2yxD32yx6在 BC 中,5cos2, 1C, 5A,则 BA 4B 30C 29 D 257为计算12491S,设计了右侧的程序框图,则在空白框中应填入A

2、 i B 2 C 3i D 4开 始0, 0N T S NT S输 出1i100i1NNi 11TTi结 束是 否8我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和 ”,如 3072在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是A1B14C15D189在长方体 1CDA中, , 13A,则异面直线 1A与 B所成角的余弦值为A15B56C5D210若 ()cosinfxx在 ,a是减函数,则 a的最大值是A4B2C34D 11已知 ()fx是定义域为 (,)的奇函数,满足 (1)()fxf若 (1)2

3、f,则12350ffA 50B0 C2 D5012已知 1F, 2是椭圆21(0)xyCab:的左、右焦点, A是 C的左顶点,点 P在过 A且斜率为36的直线上, 12PF 为等腰三角形, 120FP,则 的离心率为A23B C 3 D14二、填空题:本题共 4 小题,每小题 5 分,共 20 分13曲线 2ln(1)yx在点 (0,)处的切线方程为_ 14若 ,xy满足约束条件2350yx,则 zxy的最大值为 _15已知 sinco1, sin,则 sin()_16已知圆锥的顶点为 S,母线 A, SB所成角的余弦值为78, SA与圆锥底面所成角为45,若 AB 的面积为 51,则该圆锥

4、的侧面积为_三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答第 22、23 为选考题,考生根据要求作答学科*网(一)必考题:共 60 分。17( 12 分)记 nS为等差数列 na的前 项和,已知 17a, 315S(1 )求 的通项公式;(2 )求 n,并求 nS的最小值18( 12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y(单位:亿元)的折线图为了预测该地区 2018 年的环境基础设施投资额,建立了 y与时间变量 t的两个线性回归模型根据 2000 年至 2016 年的数据(时间变量 t的值依次为

5、 127, , , )建立模型: 30.415yt;根据 2010 年至 2016 年的数据(时间变量 t的值依次为127, , ,)建立模型: 917.5yt(1 )分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值;(2 )你认为用哪个模型得到的预测值更可靠?并说明理由19( 12 分)设抛物线24Cyx:的焦点为 F,过 且斜率为 (0)k的直线 l与 C交于 A, B两点, |8AB(1 )求 l的方程;学科&网(2 )求过点 , 且与 的准线相切的圆的方程20( 12 分)如图,在三棱锥 PABC中, 2, 4PABC, O为 AC的中点(1 )证明: O平面 ;

6、(2 )若点 M在棱 上,且二面角 M为 30,求 与平面 PM所成角的正弦值 PA O CB M21( 12 分)已知函数2()exfa(1 )若 ,证明:当 0时, ()1fx;(2 )若 ()fx在 ,)只有一个零点,求 a(二)选考题:共 10 分请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分22 选修 44:坐标系与参数方程(10 分)在直角坐标系 xOy中,曲线 C的参数方程为2cos4inxy,( 为参数),直线 l的参数方程为 1cos2inxty,( t为参数)(1 )求 C和 l的直角坐标方程;(2 )若曲线 截直线 l所得线段的中点坐标为 (1,

7、2),求 l的斜率23 选修 45:不等式选讲(10 分)设函数 ()|2|fxax(1 )当 a时,求不等式 ()0f的解集;(2 )若 ()1f,求 的取值范围理科数学试题参考答案一、选择题1 D 2A 3B 4B 5A 6A7 B 8C 9C 10A 11C 12D二、填空题13 2yx149 15 1216 402三、解答题17 解:(1 )设 na的公差为 d,由题意得 135ad由 7得 d=2所以 n的通项公式为 29n(2 )由(1 )得 28(4)16S所以当 n=4 时, n取得最小值,最小值为1618 解:(1 )利用模型,该地区 2018 年的环境基础设施投资额的预测值

8、为30.415926.1y(亿元) 利用模型,该地区 2018 年的环境基础设施投资额的预测值为7(亿元 )(2 )利用模型得到的预测值更可靠理由如下:()从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线30.415yt上下这说明利用 2000 年至 2016 年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势2010 年相对 2009 年的环境基础设施投资额有明显增加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模

9、型 917.5yt可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠学科*网()从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型得到的预测值 226.1 亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理说明利用模型得到的预测值更可靠以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分19 解:(1 )由题意得 (1,0)F,l 的方程为 (1)0ykx设 12(,)AyxB,由 2,4k得 22(4)0kx2160k,故 12kx所以 1224|()()kABFx由题设知248k,解得 k(舍去) ,

10、 1因此 l 的方程为 1yx(2 )由(1 )得 AB 的中点坐标为 (3,2),所以 AB 的垂直平分线方程为(3)yx,即 5yx设所求圆的圆心坐标为 0(,),则02205,(1)(1)6.yx解得 03,2xy或 01,6.因此所求圆的方程为 2(3)()x或 22()()14xy20 解:(1 )因为 4APC, O为 AC的中点,所以 OPAC,且 3连结 OB因为 2,所以 B 为等腰直角三角形,且 , 1由 22OPB知 POB由 ,AC知 平面 AC(2 )如图,以 为坐标原点,ur的方向为 x轴正方向,建立空间直角坐标系xyz由已知得 (0,)(2,0)(,)(0,2)(

11、,3),(0,23),OBACPAur取平面 PAC的法向量 ur设 (,2)()Maa,则 (,4)Mar设平面 的法向量为 (,)xyzn由 0,APurrn得 230(4)a,可取 (34),)an,所以 22cos,3()OBr由已知可得 |,|urn所以 223|4|3=()a解得 4a(舍去) , 43a所以 8,)3n又 (0,2)PCur,所以 3cos,4PCurn所以 PC与平面 AM所成角的正弦值为 3421 解:(1 )当 a时, ()1fx等价于2(1)e0x设函数2()eg,则22)e(1)exxg 当 x时, 0x,所以 ()x在 ,)单调递减而 (0),故当 时

12、, 0,即 (1fx(2 )设函数2()1exhxa()f在 ,只有一个零点当且仅当 ()hx在 ,)只有一个零点(i)当 0a时, ()x, ()没有零点;(ii)当 时, 2exha当 (,2)x时, ()x;当 (,)时, ()0hx所以 h在 0单调递减,在 单调递增故 24()1ea是 ()hx在 0,)的最小值若 ()0h,即24, ()在 ,)没有零点;若 (2),即2ea, ()hx在 0,)只有一个零点;若 ()0h,即24,由于 ()1,所以 ()hx在 0,2有一个零点,由(1)知,当 x时, 2ex,所以333424616() 10e()()aah a故 x在 2,)有

13、一个零点,因此 hx在 ,)有两个零点综上, ()fx在 0,)只有一个零点时,2e4a22 解:(1 )曲线 C的直角坐标方程为2146xy当 cos0时, l的直角坐标方程为 tan2tax,当 时, 的直角坐标方程为 1(2 )将 l的参数方程代入 C的直角坐标方程,整理得关于 t的方程2(13cos)4(cosin)80t因为曲线 截直线 l所得线段的中点 1,)在 C内,所以有两个解,设为 1t, 2,则120t又由得 1224(cosin)3t,故 cosin0,于是直线 l的斜率tank23 解:(1 )当 a时,24,1,()6,.xf可得 ()0fx的解集为 |23x(2 ) 等价于 |4a而 |xa,且当 2x时等号成立故 ()1fx等价于 |2|4a由 |4可得 6或 a,所以 的取值范围是 ,6,)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 初中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报