收藏 分享(赏)

甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc

上传人:weiwoduzun 文档编号:3887671 上传时间:2018-11-25 格式:DOC 页数:20 大小:668.50KB
下载 相关 举报
甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc_第1页
第1页 / 共20页
甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc_第2页
第2页 / 共20页
甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc_第3页
第3页 / 共20页
甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc_第4页
第4页 / 共20页
甘肃省天水市第一中学2016届高三下学期第四次模拟考试理数试题-Word版含解析.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合 A=x|x22x30,B=x|y=lnx,则 AB=( )A(0,3) B(0,2) C(0,1) D(1,2)【答案】A【解析】试题分析:由题意得, |13,|0AxBx,所以 |03ABx,故选 A考点:集合的运算2.已知 i为虚数单位, aR,若 2i为纯虚数,则复数 2zai的模等于( )A 2 B 1 C 3 D 6【答案】C考点:复数的运算与复数的定义3若 10ab,则下列结论不正确的是( )A 2 B 2ab C 0ab D ab【答案】D【解析】试

2、题分析:由题意得, 10ab,则 0a,则 ba,故选 D考点:不等关系4.向量 ,ab均为非零向量, (2),()abab,则 ,的夹角为( )A 6 B 3 C 3 D 56【答案】B【解析】试题分析:由 (2),()abab,则 2()0, 0a ,所以 21ab,所以 1cosb,所以 3,故选 B考点:向量的运算及向量的夹角5.各项为正的等比数列 na中, 4与 1的等比中项为 2,则 2721logla的值为( )A4 B3 C2 D1【答案】B考点:等比数列的性质及对数的运算6.已知实数 xy、满足12xm,如果目标函数 zxy的最小值为-1,则实数 m( )A6 B5 C4 D

3、3 【答案】B【解析】试题分析:作出不等式组表示的可行域,如图所示,由目标函数 zxy的最小值为 1,得 1yx,当 z时,函数 1yx,此时对应的平面区域在直线 的下方,由21yx,解得 2,3y,即 (2,)A,同时 也在直线 xym上,所以35m,故选 B考点:线性规划的应用7.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A 43 B 53 C 23 D 83【答案】B考点:几何体的三视图及体积计算【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对

4、正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,根据给定的三视图可知,该几何体是一个三角形和一个正方形组成底面的组合体,根据几何体的体积公式,即可求解几何体的体积8.如右图所示的程序框图,若输出的 8S,则判断框内应填入的条件是( )A 3?k B 4?kC 5 D 6【答案】C考点:循环结构的程序框图9.定义在 R上的偶函数 ()fx满足: (4)20f,在区间 (,3)与 ,0上分别递增和递减,则不等式 0的解集为( )A (,4)(,) B (,)(, C (,4)(2, D2【答案】D【解析】试题分析:由题意得,因为偶函数 ()fx满足: (4)20f,所以4(1)41

5、0ffff,且 在区间 ,3)与 ,上分别递增和递减,不等式 0x,即等价于求函数在第一、三象限图形 x的取值范围,即(,)(2,函数图象位于第三象限, (2,4)函数的图象位于第一象限,综上实数,不等式 xf的解集为 (,)0x,故选 D考点:函数的奇偶性的应用;不等式的求解10.已知点 12F、分别是双曲线2:1(,)yCab的左右焦点,过 1F的直线 l与双曲线 C的左、右两支分别交于 AB、两点,若 2:3:45BFA,则双曲线的离心率为( )A2 B4 C 13 D 1【答案】C考点:双曲线的几何性质11.三棱锥 PABC中, 15,6,ACP平面 ABC, 2P,则该三棱锥的外接球

6、表面积为( )A 253 B 25 C 83 D 83【答案】D【解析】试题分析:由题意得,在 ABC中,因为 15,6BCA,由余弦定理得22(15)()61cos5B,所以 2sin,所以 BC外接圆的半径为2sin265ACr,即 4r,所以球的半径为 2283RrP,所以球的表面积为 28342SR,故选 D考点:球的组合体及球的表面积的计算【方法点晴】本题主要考查了有关球的组合体及球的表面积的计算、正弦定理与余弦定理的应用,着重考查了学生的推理与运算能力和空间想象能力,属于中档试题,本题的解答中根据余弦定求解 cosB的值,进而求解 sinB,利用正弦定理求解三角形 ABC外接圆的半

7、径,进而求解球的半径,利用球的表面积公式求解球的表面积12.一矩形的一边在 x轴上,另两个顶点在函数 2(0)1xy的图像上,如图,则此矩形绕 x轴旋转而成的几何体的体积的最大值是( )A B 3 C 4 D【答案】A考点:旋转体的体积的计算【方法点晴】本题主要考查了空间几何体的体积的计算、基本不等式的应用,解答的关键确定 12x的值,属于中档试题,同时着重考查了转化与化归的思想方法及数形结合的思想方法的应用,本题的解答中先求出 y的范围,再设出点 ,AB的坐标,根据 ,AB两点的纵坐标相等得到 12x,再求出高 h,根据图形旋转得到一个圆柱,根据圆柱的体积公式得到关系式,利用基本不等式求最值

8、第卷(非选择题共 90 分)二、填空题(本大题共 4 小题,每题 5 分,满分 20 分 )13记集合 ,构成的平面区域分别为 M, N,现随机地向 M 中抛一粒豆子(大小忽略不计),则该豆子落入 N 中的概率为_.【答案】 12【解析】试题分析:集合 ,AB所构成的平面区域 ,N分别为圆与直角三角形,如图所示,面积分别为 1,2,随机地向 M中抛掷一粒豆子(大小忽略不计) ,则该豆子落入 N中的概率为P考点:几何概型及其概率的计算14.已知 43cos()sin65,则 7sin()6的值是_【答案】 45考点:三角函数的化简求值15.已知点 (0,2)A,抛物线 21:(0)Cyax的焦点

9、为 F,射线 A与抛物线 C相交于点M,与其准线相交于点 N,若 1:5FM,则 a的值等于_【答案】 263考点:抛物线的定义及其简单的几何性质【方法点晴】本题主要考查了抛物线的标准方程及抛物线的定义、简单的几何性质的应用,属于中档试题,同时着重考查了数形结合法和转化与化归思想方法的应用,本题的解答中作出 M在准线上的射影为 K,由抛物线的定义知 MFK,根据题设 :FMN,得到:26:1KN,再利用斜率相等得到关于 a的方程,求解实数 a的值16.数列 na的通项 22(cosin)3nA,其前 n项和为 nS,则 30_【答案】 470【解析】试题分析:由题意得,因为 222(cosin

10、)cos33n naA,所以 2230461coss0S2221135890222222(1)(46)(3)3830)(56(930) 12(40165)(179)89042 考点:数列的求和;数列的综合应用【方法点晴】本题主要考查了二倍角角的余弦公式的化简与运算、数列的分组求和法的应用,解答的关键是平方差公式的灵活应用,试题有一定的难度,属于难题,着重考查了学生的推理与运算能力和根据数列求和中的分组求和方法的应用,此类问题平时注意总结和积累,本题的解答中利用二倍角的余弦公式和三角函数值,转化为 222301(3)(8930)S是解答本题的难点三、解答题(本大题共 6 小题,共 70 分.解答

11、应写出文字说明、证明过程或演算步骤.)17.(本小题满分 12 分)已知函数 22()sincosincofxxx (1)当 0,2x时,求 f的值域;(2)若 ABC的内角 ,的对边分别为 ,abc且满足sin()3,cos()bACa,求)f的值【答案】 (1) ,2;(2) ()1fB(2)由题意可得 sin()2sinicos()ACAC有,sinco()cAC,化简可得: si2inA 由正弦定理可得: 2ca, 3b,余弦定理可得:222431cosacbaBA, 0B 3, 所以 ()1fB考点:三角恒等变换;三角函数的图象与性质;正弦定理与余弦定理18.(本小题满分 12 分)

12、自 2016 年 1 月 1 日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个” “生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了 200 户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周) 14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为 14 周与 16 周,估计某家庭有生育意愿的概率分别为多少?(2)假设从 5 种不同安排方案中,随机抽取 2 种不同安排分别作为备选方案,然后由单

13、位根据单位情况自主选择求两种安排方案休假周数和不低于 32 周的概率;如果用 表示两种方案休假周数和求随机变量 的分布及期望【答案】 (1) 50, 2;(2) 35;分布列见解析, 32考点:离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量的分布列19(满分 12 分)如图,在四棱锥 PABCD 中,底面 ABCD 为直角梯形,ADBC,ADC=90PA=PD=AD=2BC=2,CD= ,Q 是 AD 的中点,M 是棱 PC 上的点,且PM=3MC()求证:平面 PAD底面 ABCD;()求二面角 MBQC 的大小【答案】 (I)证明见解析;(II) 6【解析

14、】试题分析:(I)连结 BQ,易得 PAD,利用勾股定理可得 PQB,通过面面垂直的判定定理即可得到结论;(II)以 为原点,分别以 ,A为 ,xyz轴建立坐标系如图,通过题意可得 ,M,则所求二面角记为平面 M的一个法向量与平面 C的一个法向量的夹角,计算即可考点:平面与平面垂直的判定与证明;二面角的求解20.(本小题满分 12 分)如图,在平面直角坐标系 xOy中,已知 0(,)Rxy是椭圆2:14xyC上的一点,从原点 O向圆 2200:()()8Rxy作两条切线,分别交椭圆于点 ,PQ(1)若 点在第一象限,且直线 ,OPQ互相垂直,求圆 R的方程;(2)若直线 ,PQ的斜率存在,并记

15、为 12,k,求 12kA的值;【答案】 (1) 22()()8xy;(2) 1考点:圆的标准方程;直线与圆的位置关系;直线与椭圆的位置的应用【方法点晴】本题主要考查了圆的标准方程、直线与圆的位置关系及直线与椭圆的位置的应用,通知着重考查了分析问题、解决问题的能力和转化与化归的思想方法的应用,属于中档试题,本题的解答中设出直线 1:OPykx和 2:Qykx的方程,利用都与圆 R相切,借助圆心到直线的距离等于半径,可得 2A,结合点 0(,)R在椭圆 C上,即可得到 12k的值21.(本小题满分 12 分)已知函数 ln(2)xf(1)求 (在 1,a上的最小值;(2)若关于 x的不等式 2(

16、)0fxmf只有两个整数解,求实数 m的取值范围【答案】 (1)当 时,最小值为 (1)ln2;当 a,最小值为 ln2()af;(2) ln,l63(2)由(1)知, ()fx的递增区间为 (0,)2e,递减区间为 (,)2e,且在 (,)e上 ln2l1e,又 x,则 )0fx又 10f考点:利用导数研究函数的单调性与最值;导数在函数中的综合应用【方法点晴】本题主要考查了利用导数研究函数的单调性与最值、导数在函数中的综合应用,同时着重考查了转化与化归的思想方法及分类讨论的思想方法的应用,试题有一定的难度,本题的解答中,根据第(1)问中可得函数的单调区间,分 0m, , 0三种情形,判断不等

17、式的解集的情况,可得若不等式 2()fxf有两整数解,则(3)()2fmf,即可实数 m的取值范围请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分 10 分)已知 C点在 OA直径 BE的延长线上, CA切 O于 点, CD是 AB的平分线且交E于点 F,交B于点 D(1)求 的度数;(2)若 ABC,求 的值【答案】 (1) 045;(2) 3考点:弦切角定理;与圆有关的比例线段23.(本小题满分 10 分)在平面直角坐标系中,直线 l的参数方程为 13xty( 为参数) ,在以直角坐标系的原点O为极点, x轴的正半轴为极

18、轴的极坐标系中,曲线 C的极坐标方程为 2cosin(1)求曲线 C的直角坐标方程和直线 l的普通方程;(2)若直线 l与曲线 相交于 AB、两点,求 AO的面积【答案】 (1) 2yx, 40y;(2) 1【解析】试题分析:(1)利用极坐标与直角坐标的互化,可把极坐标方程化为普通方程;消去参数可得直线的直角坐标方程;(2)将直线的参数方程代入曲线的方程,得 2870t,由12ABt,即可求解 AB的长度,再利用点到直线的距离公式求解 AOB的高,即可求解三角形的面积试题解析:(1)由曲线 C的极坐标方程是: 2cosin,得 2sincos由曲线 的直角坐标方程是: 2yx考点:参数方程、极

19、坐标方程与直角坐标方程的互化;直线参数的应用24.(本小题满分 10 分)设函数 ()2fxa(1)若不等式 6的解集为 |64x,求实数 a的值;(2)在(1)的条件下,若不等式 2()1)5fkx的解集非空,求实数 k的取值范围【答案】 (1) 2a;(2) |30k、【解析】试题分析:(1)由题意得 26xa,即 32ax,在根据它的解集为|64x,可得方程组,即可求解实数 a的值; (2) (1)的条件下,由不等式2()1)5fkx可得24(x,令 3,()2121xgx,画出 gx的图象,要使得不等式的解集非空,只需 k,或 k,即可求解实数 k的取值范围试题解析:(1) 26xa, 6xa, 62axa, 32a. ()f的解集为 4, 6342,解得 2a 考点:绝对值函数的应用;绝对值不等式的解法

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报