收藏 分享(赏)

描述性统计学公式.doc

上传人:weiwoduzun 文档编号:3704477 上传时间:2018-11-16 格式:DOC 页数:18 大小:547.54KB
下载 相关 举报
描述性统计学公式.doc_第1页
第1页 / 共18页
描述性统计学公式.doc_第2页
第2页 / 共18页
描述性统计学公式.doc_第3页
第3页 / 共18页
描述性统计学公式.doc_第4页
第4页 / 共18页
描述性统计学公式.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、统计学公式汇总表一、组限和组中值1 当两组间的相邻组限重合时:组距=本组上限本组下限组中值=(上限+ 下限)/ 2 或=下限+组距 / 2或=上限组距 / 22 当两组间的相邻组限不重合时:组距=下组下限本组下限或=本组上限上组上限组中值=(本组下限+ 下组下限)/ 2或=本组下限+组距 / 2或=下组下限组距 / 23 组距式分组中的“开口”情况:组中值=上限邻组组距 / 2或=下限+邻组组距 / 2一、相对指标的种类和计算方法(一)计划完成相对数1 计划完成相对数的基本计算公式:计划完成相对数= * 100%计 划 完 成 数实 际 完 成 数例:某公司计划 2005 年销售收入 500

2、万元,实际的销售收入 552 万元。则:计划完成相对数= * 100% = 110.4%5022 计划完成相对数的派生公式:(1)对于产量、产值增长百分数:计划完成相对数= * 100%10计 划 增 长实 际 增 长(2)对于产品成本降低百分数:计划完成相对数= * 100%计 划 增 长实 际 增 长例:某企业 2005 年规定产值计划比上年增长 8%,计划生产成本比上年降低 5%,产值实际比上年提高 10%,生产成本实际比上年降低 6%,试求该企业产值和成本计划完成相对数。解:产值计划完成相对数= * 100% = 101.85%810成本计划完成相对数= * 100% = 98.95%

3、5106(3)计划执行进度相对数的计算方法:计划执行进度= * 100%本 期 计 划 数 成 数计 划 期 内 某 月 止 累 计 完例:某公司 2005 年计划完成商品销售额 1500 万元,19 月累计实际完成 1125 万元。则:19 月计划执行进度= * 100% = 75%502(二)结构相对数结构相对数= * 100%总 体 数 值总 体 某 部 分 数 值例:某地区 2005 年国内生产总值为 1841.61 亿元,其中第一产业增加值为 88.88 亿元,则:第一产业增加值所占比重= * 100% =4.83%1.684(三)比例相对数比例相对数= * 100%同 一 总 体

4、另 一 部 分 数 值总 体 中 某 一 部 分 数 值例:某地区 2005 年国内生产总值为 2106.96 亿元,其中轻工业产值为 1397.31 亿元,重工业产值为 709.65 亿元,则:轻重工业比例=1397.31:709.65=1.97:1(四)比较相对数比较相对数= * 100% 标 数 值乙 地 区 ( 单 位 ) 同 一 指 数 值甲 地 区 ( 单 位 ) 某 指 标例:2005 年某省两个市有关资料如表所示。市名 人口数(万人) 国内生产总值(亿元) 人均国内生产总值(元/人)甲 725 280 3862乙 340 192 5647比较相对数(以乙市为100)213.24

5、 145.83 68.39(五)动态相对数动态相对数= * 100%基 期 数 值报 告 期 数 值例:某地区国内生产总值 2004 年为 2097.77 亿元,2005 年为 2383.07 亿元。则:动态相对数= * 100% = 113.6%7.20938(六)强度相对数强度相对数= 另 一 有 联 系 的 指 标 数 值某 一 指 标 数 值例:某地区 2005 年零售商业网点为 50000 个,年平均人口为 800 万人,则:零售商业网密度= = 62.5(个/万人)万 人个805零售商业网密度= = 0.016(万人/个)个万 人三、平均指标(一)算数平均数1 简单算数平均数:=

6、= _xnxn21i例:某生产班组 10 个工人日加工零件数量分别为20、21、22、23、24、25、26、28、29、32,则这 10 个工人日平均加工零件数为:平均加工零件数= = 25(件)1032982654231202 加权算术平均数: 根据单项数列计算加权算术平均数:= = _xnfffx 321 n1ifii例:某车间有 200 名职工,他们每月加工的零件数如表所示:零件数(件) xi 工人数(人) fi 产量*工人数 xifi30 20 60032 50 160034 76 258435 40 140036 14 504合计 200 6688职工平均加工零件数= = 33.4

7、4(件)14076520*36*3*3根据组距数列计算加权算术平均数= (x i 为组中值)_n1ifii例:某食品厂上月有员工 300 人,其糖果产量资料如表所示:产量(千克) 员工人数(人)f i 组中值 xi 总产量(千克)x ifi400 以下 22 350 7700400500 50 450 22500500600 66 550 36300600700 76 650 49400700800 56 750 42000800 以上 30 850 25500合计 300 183400= = 611.33(千克)_xn1ifii(二)调和平均数1 简单调和平均数:H= (H 代表调和平均数,

8、x i 代表各单位标志值,n 代表标志值的项数)ni1例:轮船从甲地开往乙地,去时顺水行舟,船速为每小时 100 千米,返回时逆水行舟,船速为每小时 80 千米,求轮船的平均时速。H= =88.89(千米 /时)28012 加权调和平均数:H=niiiixm1例:红星制造厂本月购进甲种原材料三批,每批采购价格和采购金额如表所示,求本月购进甲种原材料的平均价格。价格(元/千克) xi 采购金额(元) mi 采购量(千克) ix第一批 50 25000 500第二批 55 44000 800第三批 60 18000 300合计 87000 1600原材料的平均价格:H= = =54.38(元/千克

9、)niiiixm16087(三)几何平均数1 简单几何平均数:G= = (G 代表几何平均数,x i 代表各单位标nnx*32 i志值,n 代表标志值的项数,连乘符号)例:某地区上个五年期间,经济的发展速度如表所示:时间 第一年 第二年 第三年 第四年 第五年发展速度(%) 104.1 107.7 110.5 114.0 118.0则平均发展速度 G= = =1.1075nix5 8.1*405.17.*4.012 加权几何平均数:G= =nif fnff132*iffix1利用对数计算,则计算公式为:lgG= =ni nffxf121lgllgiiif1l例:某地区 20 年来的经济发展速度

10、如表所示,要求计算 20 年中经济平均发展速度。发展速度(%)x i 年数(次数) fi lgxi fi lgxi102 1 2.0086 2.0086105 5 2.0212 10.106107 10 2.0294 20.2940110 4 2.0414 8.1656合计 20 40.5742lgG= = =2.0287niiifx1lg2074.5G=106.83%四、众数和中位数(一)众数: 下限公式:M 0 = L+ i*21上限公式:M 0 =U公式中:L 代表众数组的下限值;U 代表众数组的上限值; 1 代表众数组次数与前一组次数之差; 2 代表众数组次数与后一组次数之差;i 代表

11、众数组的组距。例:现检测某厂生产的一批电子产品的耐用时间,的资料如表所示。耐用时间(小时) 产品个数(个)600 以下 84600800 1618001000 24410001200 15712001400 361400 以上 18合计 700易知众数落在第二组,则:L=800, =244161=83, =244157=87,i = 20012众数 M0 = L+ = 800 + =897.65(小时)i*202*873(二)中位数1 由未分组资料确定中位数:Om = (n 代表单位标志值的项数)例:某生产小组 7 人日产量(件) ,由低到高排列为:9,10,12,13,14,15,16,求中

12、位数。中位数所在位置 Om = = =42172 由单项数列确定中位数:Om = 21nif例:某车间 56 个工人的日产量资料如表所示,求车间工人日产量的中位数。日产量(件) 工人数(人) 累计次数10 8 815 12 2018 20 4020 10 5022 6 56合计 56 Om = = =28,对应在第三组。21nif56所以 Me =183 由组距数列确定中位数中位数所在位置 Om = 21nif下限公式:M e = L + * imnifSf11上限公式:M e =U * imnifS112公式中:L 为中位数所在组的下限值;U 为中位数所在组的上限值;fm 为中位数所在组的次

13、数;Sm1 为中位数所在组前面各组的累计次数;Sm+1 为中位数所在组后面各组的累计次数;i 代表中位数所在组的组距。累计次数耐用时间(小时) 产品个数(个)以下累计 以上累计600 以下 84 84 700600800 161 245 6168001000 244 489 45510001200 157 646 21112001400 36 682 541400 以上 18 700 18合计 700 Om = = =35021nif70说明中位数在第三组,即在 800-1000 小时之间。中位数 Me = L + * i = 800 + = 886.07(小时)mnifSf112 20*457五、几种平均数的关系1 算数平均数、众数和中位数的关系:当 =Me=M0 时,分布曲线为正态分布;_x当 MeM0 时,分布曲线右偏;当 0 时,表明分布数列是正向偏态(右偏) 。当 3 时,次数分布曲线为尖顶峰曲线,说明总体次数分布集中趋势明显,标志值变异程度小;34计算结果表明,工人日产量的分布曲线呈现尖顶峰的分布趋势,说明工人日产量间的差异程度较小,平均数 = 75 件的代表性较强。_x

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 统计学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报