洞察高考43个热点,专题一 高考中选择题、 填空题解题能力大突破,第二部分,主要题型:高考中的立体几何题目是很成熟的一种类型,常常考查“平行”、“垂直”两大证明及“空间角”的计算问题,解题方法上表现为传统方法与向量方法:传统方法优势表现为计算简单,过程简洁,但是对概念的理解要求深刻、透彻;向量方法更多的体现是作为一种工具,且有固定的“解题套路”,但是要有准确建立空间直角坐标系及较强的运算能力,善于观察,精妙转化,做好立体几何不再 是难事,抢分秘诀,(1)利用“线线线面面面”三者之间的相互转化证明有关位置关系问题:由已知想未知,由求证想判定,即分析法与综合法相结合来找证题思路;利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一.(2)空间角的计算,主要步骤:一作,二证,三算,若用向量,那就是一证、二算.(3)点到平面的距离:直接能作点到面的垂线求距离;利用“三棱锥体积法”求距离;利用向量求解,点P到平面的距离为 (N为P在面内的射影,M,n是的法向量).,押题4 如图,已知正三棱柱ABCA1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合(1)当CF1时,求证:EFA1C;(2)设二面角CAFE的大小为,求tan 的最小值,图1,图2,