1、.第一章极限和连续第一节极限复习考试要求1.了解极限的概念(对极限定义 等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解极限的有关性质,掌握极限的四则运算法则。3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。4.熟练掌握用两个重要极限求极限的方法。第二节函数的连续性复习考试要求1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。2.会求函数的间断点。3
2、.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。第二章一元函数微分学第一节导数与微分复习考试要求1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。2.会求曲线上一点处的切线方程与法线方程。3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。5.了解高阶导数的概念。会求简单函数的高阶导数。6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。第二节导数的应用复习考试要求1.熟练掌握用洛必达法则求 “
3、0”、“-”型未定式的极限的方法。2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。4.会判断曲线的凹凸性,会求曲线的拐点。5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分复习考试要求1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。2.熟练掌握不定积分的基本公式。.3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。4.熟练掌握不定积分的分部积分法。5.掌握简单有理函数不定积分的计算。第二
4、节定积分及其应用复习考试要求1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的基本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。4.熟练掌握牛顿莱布尼茨公式。5.掌握定积分的换元积分法与分部积分法。6.理解无穷区间的广义积分的概念,掌握其计算方法。7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。第四章多元函数微分学复习考试要求1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。2.了解二元函数的极限与连续的概念。3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元
5、函数的二阶偏导数的求法,掌握二元函数的全微分的求法。4.掌握复合函数与隐函数的一阶偏导数的求法。5.会求二元函数的无条件极值和条件极值。6.会用二元函数的无条件极值及条件极值解简单的实际问题。第五章概率论初步复习考试要求1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。6.了解随机变量的概念及其分布函数。7.理解
6、离散性随机变量的意义及其概率分布掌握概率分布的计算方法。8.会求离散性随机变量的数学期望、方差和标准差。第一章极限和连续第一节极限复习考试要求1.了解极限的概念(对极限定义 等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解极限的有关性质,掌握极限的四则运算法则。.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。4.熟练掌握用两个重要极限求极限的方法。主要知识内容(一)数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列
7、,简称数列,记作x n,数列中每一个数称为数列的项,第 n 项 xn 为数列的一般项或通项,例如(1)1,3,5, (2n-1) , (等差数列)(2) (等比数列)(3) (递增数列)(4)1,0,1,0 , , (震荡数列)都是数列。它们的一般项分别为(2n-1), 。对于每一个正整数 n,都有一个 xn 与之对应,所以说数列 xn可看作自变量 n 的函数 xn=f(n) ,它的定义域是全体正整数,当自变量 n 依次取 1,2,3一切正整数时,对应的函数值就排列成数列。在几何上,数列x n可看作数轴上的一个动点,它依次取数轴上的点 x1,x2,x3,.xn,。2.数列的极限定义对于数列x
8、n,如果当 n时,x n 无限地趋于一个确定的常数 A,则称当 n 趋于无穷大时,数列x n以常数A 为极限,或称数列收敛于 A,记作 比如:无限的趋向 0,无限的趋向 1否则,对于数列x n,如果当 n时,x n 不是无限地趋于一个确定的常数,称数列x n没有极限,如果数列没有极限,就称数列是发散的。比如:1,3 , 5, (2n-1) ,1,0,1,0 ,数列极限的几何意义:将常数 A 及数列的项 依次用数轴上的点表示,若数列x n以 A 为极限,就表示当 n趋于无穷大时,点 xn 可以无限靠近点 A,即点 xn 与点 A 之间的距离|x n-A|趋于 0。比如:无限的趋向 0无限的趋向
9、1(二)数列极限的性质与运算法则1.数列极限的性质定理 1.1(惟一性)若数列x n收敛,则其极限值必定惟一。定理 1.2(有界性)若数列x n收敛,则它必定有界。注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如:1,0,1,0 , 有界: 0,12.数列极限的存在准则.定理 1.3(两面夹准则)若数列x n,yn,zn满足以下条件:(1) ,(2) , 则定理 1.4 若数列x n单调有界,则它必有极限。3.数列极限的四则运算定理。定理 1.5(1)(2)(3)当 时,(三)函数极限的概念1.当 xx 0 时函数 f(x )的极限(1)当 xx 0 时 f(x)的极限定义对于函
10、数 y=f(x) ,如果当 x 无限地趋于 x0 时,函数 f(x )无限地趋于一个常数 A,则称当 xx 0 时,函数f(x)的极限是 A,记作或 f(x)A(当 xx 0 时)例 y=f(x)=2x+1x1,f(x )?x1x1(2)左极限当 xx 0 时 f(x)的左极限定义对于函数 y=f(x) ,如果当 x 从 x0 的左边无限地趋于 x0 时,函数 f(x )无限地趋于一个常数 A,则称当xx 0 时,函数 f(x)的左极限是 A,记作或 f(x 0-0)=A(3)右极限当 xx 0 时,f(x)的右极限定义对于函数 y=f(x) ,如果当 x 从 x0 的右边无限地趋于 x0 时
11、,函数 f(x )无限地趋于一个常数 A,则称当xx 0 时,函数 f(x)的右极限是 A,记作或 f(x 0+0)=A例子:分段函数,求 ,解:当 x 从 0 的左边无限地趋于 0 时 f(x)无限地趋于一个常数 1。我们称当 x0 时,f (x )的左极限是 1,即有当 x 从 0 的右边无限地趋于 0 时,f(x)无限地趋于一个常数 -1。我们称当 x0 时,f (x )的右极限是-1 ,即有.显然,函数的左极限 右极限 与函数的极限 之间有以下关系:定理 1.6 当 xx 0 时,函数 f(x)的极限等于 A 的必要充分条件是反之,如果左、右极限都等于 A,则必有 。x1 时 f(x)
12、?x1x1f(x)2对于函数 ,当 x1 时,f(x )的左极限是 2,右极限也是 2。2.当 x时,函数 f(x)的极限(1)当 x时,函数 f(x)的极限y=f(x)xf(x)?y=f(x)=1+xf(x)=1+ 1定义对于函数 y=f(x) ,如果当 x 时,f(x )无限地趋于一个常数 A,则称当 x时,函数 f(x )的极限是A,记作或 f(x)A(当 x时)(2)当 x+时,函数 f(x)的极限定义对于函数 y=f(x) ,如果当 x+时,f(x)无限地趋于一个常数 A,则称当 x+时,函数 f(x)的极限是 A,记作这个定义与数列极限的定义基本上一样,数列极限的定义中 n+的 n
13、 是正整数;而在这个定义中,则要明确写出 x+,且其中的 x 不一定是正整数,而为任意实数。y=f(x)x+f(x)x?x+,f(x)=2+ 2例:函数 f(x)=2+e -x,当 x+时,f(x )?解:f(x )=2+e -x=2+ ,x+,f(x )=2+ 2所以.(3)当 x- 时,函数 f( x)的极限定义对于函数 y=f(x) ,如果当 x-时,f(x )无限地趋于一个常数 A,则称当 x-时,f (x )的极限是 A,记作x-f(x)?则 f(x)=2+ (x0)x-,-x+f(x)=2+ 2例:函数 ,当 x-时,f(x)?解:当 x-时,-x+2 ,即有由上述 x,x+,x-
14、时,函数 f(x )极限的定义,不难看出:x时 f(x )的极限是 A 充分必要条件是当 x+以及 x- 时,函数 f(x)有相同的极限 A。例如函数 ,当 x-时,f(x)无限地趋于常数 1,当 x+时,f(x)也无限地趋于同一个常数 1,因此称当 x时 的极限是 1,记作其几何意义如图 3 所示。f(x)=1+y=arctanx不存在。但是对函数 y=arctanx 来讲,因为有即虽然当 x-时,f(x)的极限存在,当 x+时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当 x时,y=arctanx 的极限不存在。x)=1+y=arctanx.不存在。但是对函数 y=arctan
15、x 来讲,因为有即虽然当 x-时,f(x)的极限存在,当 x+时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当 x时,y=arctanx 的极限不存在。(四)函数极限的定理定理 1.7(惟一性定理)如果 存在,则极限值必定惟一。定理 1.8(两面夹定理)设函数 在点 的某个邻域内( 可除外)满足条件:(1) ,(2)则有 。注意:上述定理 1.7 及定理 1.8 对 也成立。下面我们给出函数极限的四则运算定理定理 1.9 如果 则(1)(2)(3)当 时, 时,上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:(1)(2)(3)用极限的运算法则求极限时,必须注意:这
16、些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。另外,上述极限的运算法则对于 的情形也都成立。(五)无穷小量和无穷大量1.无穷小量(简称无穷小)定义对于函数 ,如果自变量 x 在某个变化过程中,函数 的极限为零,则称在该变化过程中, 为无穷小量,一般记作常用希腊字母 ,来表示无穷小量。定理 1.10 函数 以 A 为极限的必要充分条件是:可表示为 A 与一个无穷小量之和。注意:(1)无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零。(2)要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量。(3)一个变量是否为无穷小
17、量是与自变量的变化趋势紧密相关的。在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽相同。例如:振荡型发散 (4)越变越小的变量也不一定是无穷小量,例如当 x 越变越大时, 就越变越小,但它不是无穷小量。.(5)无穷小量不是一个常数,但数“0”是无穷小量中惟一的一个数,这是因为 。2.无穷大量(简称无穷大)定义;如果当自变量 (或 )时, 的绝对值可以变得充分大(也即无限地增大),则称在该变化过程中,为无穷大量。记作 。注意:无穷大()不是一个数值,“”是一个记号,绝不能写成 或 。3.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一种简单的关系,见以下的定理。定理 1.11
18、 在同一变化过程中,如果 为无穷大量,则 为无穷小量;反之,如果 为无穷小量,且 ,则为无穷大量。当 无穷大无穷小当 为无穷小无穷大4.无穷小量的基本性质性质 1 有限个无穷小量的代数和仍是无穷小量;性质 2 有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。性质 3 有限个无穷小量的乘积是无穷小量。性质 4 无穷小量除以极限不为零的变量所得的商是无穷小量。5.无穷小量的比较定义设 是同一变化过程中的无穷小量,即 。(1)如果 则称 是比 较高阶的无穷小量,记作 ;(2)如果 则称 与 为同阶的无穷小量;(3)如果 则称 与 为等价无穷小量,记为 ;(4)如果
19、 则称 是比 较低价的无穷小量。当等价无穷小量代换定理:如果当时 , 均为无穷小量,又有 且 存在,则 。均为无穷小又有.这个性质常常使用在极限运算中,它能起到简化运算的作用。但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用。常用的等价无穷小量代换有:当 时,sinxx;tan x;arctanxx;arcsinxx;(六)两个重要极限1.重要极限重要极限是指下面的求极限公式令这个公式很重要,应用它可以计算三角函数的 型的极限问题。其结构式为:2.重要极限重要极限是指下面的公式:其中 e 是个常数(银行家常数),叫自然对数的底,它的值为e=2.718281828495045其结构式为:
20、重要极限是属于 型的未定型式,重要极限是属于“ ”型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的。(七)求极限的方法:1.利用极限的四则运算法则求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;.4.利用函数的连续性求极限;5.利用洛必达法则求未定式的极限;6.利用等价无穷小代换定理求极限。基本极限公式(2)(3)(4)例 1.无穷小量的有关概念(1)9601下列变量在给定变化过程中为无穷小量的是A. B.C. D. 答CA. 发散D.(2)0202当 时, 与 x 比较是A.高阶的无穷小量 B.等价的无穷小量C.非等价的同阶无穷小量 D.低阶
21、的无穷小量答B解:当 , 与 x 是极限的运算:0611解:答案-1例 2. 型因式分解约分求极限(1)0208 答解:(2)0621计算 答 解:例 3. 型有理化约分求极限(1)0316计算 答.解:(2)9516 答解:例 4.当 时求 型的极限 答(1)0308一般地,有例 5.用重要极限求极限(1)9603下列极限中,成立的是A. B.C. D. 答B(2)0006 答解:例 6.用重要极限求极限(1)0416计算 答解析解一:令解二:03060601.(2)0118计算 答解:例 7.用函数的连续性求极限0407 答0解:,例 8.用等价无穷小代换定理求极限0317 答0解:当例
22、9.求分段函数在分段点处的极限(1)0307设则 在 的左极限答1解析(2)0406设 ,则 答1解析例 10.求极限的反问题(1)已知 则常数解析解法一: ,即 ,得 .解法二:令 ,得 ,解得 .解法三:(洛必达法则)即 ,得 .(2)若 求 a,b 的值.解析 型未定式.当 时, .令于是 ,得 .即 ,所以 .04020017 ,则 k=_.(答:ln2).解析前面我们讲的内容:极限的概念;极限的性质;极限的运算法则;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比较。第二节函数的连续性复习考试要求1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限
23、存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。2.会求函数的间断点。3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。主要知识内容(一)函数连续的概念1.函数在点 x0 处连续定义 1 设函数 y=f(x)在点 x0 的某个邻域内有定义,如果当自变量的改变量x (初值为 x0)趋近于 0 时,相应的函数的改变量y 也趋近于 0,即则称函数 y=f(x)在点 x0 处连续。函数 y=f(x)在点 x0 连续也可作如下定义:定义 2 设函数 y=f(x)在点 x0 的某个邻域内有定义,如果当 xx 0 时,函
24、数 y=f(x)的极限值存在,且等于 x0处的函数值 f(x 0),即定义 3 设函数 y=f(x),如果 ,则称函数 f(x )在点 x0 处左连续;如果 ,则称函数 f(x)在点x0 处右连续。由上述定义 2 可知如果函数 y=f(x )在点 x0 处连续,则 f(x)在点 x0 处左连续也右连续。2.函数在区间a,b上连续定义如果函数 f(x)在闭区间a ,b上的每一点 x 处都连续,则称 f(x)在闭区间a,b 上连续,并称 f(x)为a,b 上的连续函数。这里,f(x )在左端点 a 连续,是指满足关系: ,在右端点 b 连续,是指满足关系: ,即 f(x)在左端点 a 处是右连续,
25、在右端点 b 处是左连续。可以证明:初等函数在其定义的区间内都连续。3.函数的间断点定义如果函数 f(x)在点 x0 处不连续则称点 x0 为 f(x)一个间断点。由函数在某点连续的定义可知,若 f(x)在点 x0 处有下列三种情况之一:(1)在点 x0 处,f(x)没有定义;(2)在点 x0 处,f(x)的极限不存在;(3)虽然在点 x0 处 f(x)有定义,且 存在,但,.则点 x0 是 f(x)一个间断点。,则 f(x)在A.x=0,x=1 处都间断 B.x=0,x=1 处都连续C.x=0 处间断,x=1 处连续D.x=0 处连续,x=1 处间断解:x=0 处,f(0 )=0f(0-0
26、)f( 0+0)x=0 为 f(x)的间断点x=1 处,f (1 ) =1f(1-0 )=f (1+0)=f(1)f(x )在 x=1 处连续 答案 C9703设 ,在 x=0 处连续,则 k 等于A.0 B. C. D.2分析:f(0)=k答案B例 30209设 在 x=0 处连续,则 a=解:f(0)=e 0=1f(0)=f(0-0)=f(0+0 )a=1 答案1(二)函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。定理 1.12(四则运算)设函数 f(x) ,g (x)在 x0 处均连续,则(1)f (x)g(x)在 x0 处连
27、续(2)f (x)g(x)在 x0 处连续(3)若 g(x 0)0,则 在 x0 处连续。定理 1.13(复合函数的连续性)设函数 u=g(x)在 x=x0 处连续,y=f(u)在 u0=g(x 0)处连续,则复合函数y=fg(x)在 x=x0 处连续。在求复合函数的极限时,如果 u=g(x) ,在 x0 处极限存在,又 y=f(u )在对应的 处连续,则极限符号可以与函数符号交换。即定理 1.14(反函数的连续性)设函数 y=f(x)在某区间上连续,且严格单调增加(或严格单调减少) ,则它的反.函数 x=f-1(y )也在对应区间上连续,且严格单调增加(或严格单调减少) 。(三)闭区间上连续
28、函数的性质在闭区间a,b上连续的函数 f(x ) ,有以下几个基本性质,这些性质以后都要用到。定理 1.15(有界性定理)如果函数 f(x)在闭区间a ,b上连续,则 f(x)必在a,b 上有界。定理 1.16(最大值和最小值定理)如果函数 f(x)在闭区间a,b 上连续,则在这个区间上一定存在最大值和最小值。定理 1.17(介值定理)如果函数 f(x)在闭区间a ,b上连续,且其最大值和最小值分别为 M 和 m,则对于介于 m 和 M 之间的任何实数 C,在a,b上至少存在一个 ,使得推论(零点定理)如果函数 f(x)在闭区间a ,b上连续,且 f(a)与 f(b)异号,则在a,b 内至少存
29、在一个点 ,使得f()=0(四)初等函数的连续性由函数在一点处连续的定理知,连续函数经过有限次四则运算或复合运算而得的函数在其定义的区间内是连续函数。又由于基本初等函数在其定义区间内是连续的,可以得到下列重要结论。定理 1.18 初等函数在其定义的区间内连续。利用初等函数连续性的结论可知:如果 f(x)是初等函数,且 x0 是定义区间内的点,则f(x)在 x0 处连续也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可。0407 0611例 1.证明三次代数方程 x3-5x+1=0 在区间(0,1)内至少有一个实根.证:设 f(x ) =x3-5x+1f(x)在 0,
30、1上连续f(0)=1 f(1)=-3由零点定理可知,至少存在一点 (0,1)使得 f( )=0 , 3-5+1=0.即方程在(0,1 )内至少有一个实根。本章小结函数、极限与连续是微积分中最基本、最重要的概念之一,而极限运算又是微积分的三大运算中最基本的运算之一,必须熟练掌握,这会为以后的学习打下良好的基础。这一章的内容在考试中约占 15%,约为 22 分左右。现将本章的主要内容总结归纳如下:一、概念部分重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念。极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数。函数在一点连续性的三个基本要素:(1)f (x)在点 x0 有定义。(2) 存在。(3) 。常用的是 f(x 0-0)=f(x 0+0)=f(x 0) 。二、运算部分重点:求极限,函数的点连续性的判定。1.求函数极限的常用方法主要有:(1)利用极限的四则运算法则求极限;对于“ ”型不定式,可考虑用因式分解或有理化消去零因子法。(2)利用两个重要极限求极限;(3)利用无穷小量的性质求极限;(4)利用函数的连续性求极限;若 f(x )在 x0 处连续,则 。(5)利用等价无穷小代换定理求极限;(6)会求分段函数在分段点处的极限;(7)利用洛必达法则求未定式的极限。2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性。