1、汽轮机常见故障,机组振动油系统着火水冲击超速,机组振动故障,常见振动故障的诊断,下面介绍机组常见振动故障特征、判断方法。质量不平衡转子的弯曲动静碰摩油膜失稳和汽流激振结构共振结构刚度不足联轴器不对中裂纹转子转子中心孔进油转子截面刚度不对称,质量不平衡,转子质量不平衡是汽轮发电机组最常见的振动故障,它约占了故障总数的80。随着制造厂加工、装配精度以及电厂检修质量的不断提高,这类故障的发生率正在逐渐减少。即使如此,质量不平衡目前仍是现场机组振动的主要故障。处理手段:低速动平衡,高速动平衡。,质量不平衡的一般特征,最关键的特征是:稳定的工频振动在整个信号中占主要成分。工频振幅为主的状况应该是稳定的,
2、这包括:各次启机;升降速过程;不同的工况,如负荷、真空、油温、氢压、励磁电流等。工频振动的相位同时也是稳定的。第二个主要依据是这种状况的重复性。,转子质量不平衡的分类特征,汽轮发电机组转子的质量不平衡产生的原因有三个:原始不平衡;转动过程中的部件飞脱、松动;转子的热弯曲。原始不平衡是主要原因。,原始不平衡,原始质量不平衡指的是转子开始转动之前在转子上已经存在的不平衡。它们通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。这种不平衡的特点:除振幅和相位的常规特征外,它的最显著特征是“稳定”,这个稳定是指在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速时或带负荷的时间延
3、续没有直接的关联,也不受启动方式的影响。具体所测的数据中,在同一转速,工况相差不大时,振幅波动约20,相位在1020范围内变化的工频振动均可以视为是稳定的。对于新机组,原始不平衡在第一次升速就会显现出来,在对转子进行任何处理之前的升降速振动数据中,特征重复性很好。,转动部件飞脱和松动,汽轮发电机组振动发生转动部件飞脱可能有叶片、围带、拉金以及平衡质量块;飞脱时产生的工频振动是突发性的,在数秒钟内以某一瓦振或轴振为主,振幅迅速增大到一个固定值,相位也同时会出现一个固定的变化。相邻轴承振动也会增大,但变化的量值不及前者大。这种故障一般发生在机组带有某一负荷的情况。发生松动的部件可能有护环、转子线圈
4、、槽楔、联轴器等。部件松动所造成的工频振动大的情况可以发生在升速、定速或带负荷过程。有的情况下大振动会变小,出现波动现象。,转 子 的 弯 曲,转子热弯曲,转子热弯曲引起的质量不平衡的主要特征是工频振动随时间的变化。随机组参数的提高和高参数下运行时间的延续,工频振幅逐渐增大,相位也随之缓慢变化,一定时间后这种变化趋缓,最终基本不变。存在热弯曲的转子降速过程的振幅,尤其是过临界转速时的振幅,要比转子温度低启机升速时的振幅大。两种情况下的波特图可以用来判断是否存在热弯曲。为此有时需要安排专门的试验,机组不采用滑参数停机的方式,较快地减负荷,以观察转子温度高的情况下降速过程的幅频特性,和冷态启机时进
5、行比对。一旦转子温度降低,转子的弯曲会很快恢复。因此,测试必须在转子弯曲没有完全恢复前进行。,转子热弯曲产生的原因,新机转子的热弯曲一般来自材质热应力。这种热弯曲状态是固有的、可重复的,因而可以用平衡的方法处理。有时运行原因也会导致热弯曲。如:汽缸进水、进冷空气、动静碰摩等。只要没有使转子发生永久塑性变形,这类热弯曲都是可以恢复的,引起热弯曲的根源消除后,工频振动大的现象也会随之自行消失。发电机转子也常会因为通风道堵塞引起转子一测温度高于对面一侧,转子发生类似于一阶振型的弯曲,它自然对一阶振动影响最大,表现最明显应该在过一阶临界转速时的工频振动增大。,转子永久性弯曲,当转子最大内应力超过材料的
6、屈服极限,使转子局部产生塑性变形,当外力和热应力消除后,变形不能消失,称为:塑性弯曲,也称永久性弯曲永久性弯曲是设备事故,使设备不能投入运行,必须进行直轴处理,将会造成很大的经济损失,转子永久性弯曲产生的原因:,动静摩擦转子径向局部过热膨胀弯曲当转速低于第一临界转速时,主轴的弯曲方向和转子不平衡离心力的作用方向基本一致,往往产生愈摩愈弯、愈弯愈厚的恶性循环,以致使主轴产生永久性弯曲。停机后,汽缸、转子金属温度较高,汽缸内任何意外原因进冷水,也会造成主轴弯曲进水后,汽缸产生拱背变形,盘车被迫停止静止的高温转子下半部被水浸泡,当上下温差达到150200时,就会造成主轴永久性弯曲。转子的原材料存在过
7、大的残余内应力,在较高的温度下经过一段时间的运行后,内应力逐渐得到释放,从而使转子产生弯曲变形。另外,套装转子在装配时,由于偏斜,蹩劲也会造成主轴弯曲,防止主轴弯曲的措施:,汽轮机安装时,必须考虑热状态变化,合理调整动静间隙,以保证在正常运行工况下不会发生动静摩擦。汽缸应具有良好的保温条件,保证在正常起动和停机过程中不产生过大的上下部温差。主蒸汽、再热蒸汽及抽汽管道必须有完善的疏水系统。在停机后注意切断与公用系统相连的各种水源,严防汽缸进水。运行中加强对机组振动的监视,及早发现动静摩擦。在第一临界转速以下汽轮机轴承振动达到0.04mm时,必须打闸停机,不得盲目升速或降速暖机。起动前必须认真检查
8、主轴的晃度、上下缸温差及冲转参数,在冲转条件不具备情况下,严禁起动。,动静碰摩,汽轮发电机组转动部件与静止部件的碰摩是运行中常见故障。随着现代机组动静间隙变小,碰摩的可能性随之增加。碰摩使转子产生非常复杂的振动,是转子系统发生失稳的一个重要原因,轻者使得机组出现强烈振动,严重的可以造成转轴永久性弯曲,甚至整个轴系毁坏。对碰摩的故障特征,进行了许多研究,但是,这些研究结果和实际情况还有距离,因为相同的特征对应着许多其它的故障。碰摩的诊断是目前具有一定难度的主要振动故障。每年全国都会有几台大机组发生动静碰摩而出现大振动,但在处理过程中却往往要走弯路。需要进行多次开机,平衡加重或支撑加固,为此延误数
9、周已是常事。最终开缸检查,方发现汽封或通流部分已严重摩擦。,机组碰摩原因(1),机组动静碰摩通常有下列起因:转轴振动过大。不管何种起因,大振动下的转轴振幅一旦大到动静间隙值,都可能与静止部位发生碰摩。因此,碰摩常常是中间过程,而非根本原因。由于不对中等原因使轴颈处于极端的位置,整个转子偏斜。非转动部件的不对中或翘曲也会导致碰摩。,机组碰摩原因(2),动静间隙不足有时是设计上的缺陷所造成的。也经常是安装、检修的原因,动静间隙调整不符合规定所致。动静间隙是受多种因素影响的。如:真空、凝汽器灌水、缸温等,即便在开缸状态下调整好,扣缸后的上下间隙也要变化缸体跑偏、弯曲或变形机组高压转子前汽封比较长,启
10、机中参数掌握不当容易造成这个部位发生碰摩,进而造成大轴塑性弯曲。全国大约有近30台机组发生过这样的故障。开机过程中,上下缸温差过大,造成缸体弯曲变形,是碰摩弯轴的主要运行原因之一。,碰摩的后果:,轻的:汽封磨损汽封漏汽量增大降低汽轮机效率重的:叶片断裂、主轴弯曲,甚至汽轮机完全损坏,碰摩通常发生的部位:,隔板汽封叶片围带汽封轴端汽封各轴承的油挡部位发电机的径向碰摩通常发生在密封瓦处,碰摩的种类,全周碰摩转子在它转动的一周中始终与静子保持接触。发生全周碰摩的静子在360周向都要接触,转子可以是只有部分弧段接触,也可以是全局接触。部分碰摩转子在它转动的一周中只有部分弧段接触。部分碰摩在静子上只有部
11、分弧段接触。,碰摩的三种物理现象,碰撞由于碰撞,使转子在不平衡引起的强迫同步响应的基础上叠加一个自由振动响应,这个自由振动的频率是转子的固有频率,是整个振动响应的主要成分。摩擦转子刚度的改变碰摩的响应碰摩转子的响应中应该含有次同步、同步和超同步等谐波成分。实际碰摩的响应受到碰摩发生的轴向位置、冲击的锐度、结构对不同频率振动的传递特性等因素的影响,使得各频谱成分在实际信号中复杂化。不同的情况次同步和超同步会呈现不同的量值。,碰摩转子的动力特性,碰摩发生时作用在转轴上有两种力:冲击力,即碰撞力。该力引起碰摩点局部压缩变形,并引起转轴的反弹运动。碰摩时的冲击效应有下列特点:由于冲击作用时间很短,相当
12、于一个脉冲函数,因此,产生宽频带响应由于转轴的旋转,碰摩是重复过程,因而产生的是周期性的振动。撞击时具有高的法向力和切向力。接触材料之间存在着能量的吸收和转移。接触表面的力、转子的反弹运动以及材料的局部变形都有高度的非线性特性。摩擦力。摩擦力是作用在接触点的切向力,转轴上的摩擦力与旋转方向相反。摩擦力的大小取决于接触点的法向力及摩擦表面的性质。碰摩过程中的摩擦和碰撞一样,同样具有非线性特性。因此,这个过程的振动信号含有丰富的谐波分量。碰摩的高度非线性使其经常带有混沌特性。严重的碰摩可以使材料磨损后变为轻度碰摩,甚至能完全脱离碰摩状态。摩擦的另一个重要效应是对转子的局部加热。局部加热的后果是转子
13、弯曲,工频振动增大。,碰摩的信号特征,碰摩具有多种征兆,易变的信号特征与外界条件有密切的关系,在某一时刻出现的征兆,在其它时刻可能不再复现,这使得碰摩故障的表现带有一些不确定性。,碰摩的诊断,碰摩的现场诊断是一项难度比较大的技术。如果认定了碰摩,常需要开缸处理,工作量较大,这就要求诊断的高准确性。现有的诊断方法主要还是根据振幅、频谱和轴心轨迹进行判断。另外还可以观察轴颈静态位置,碰撞点力的作用可使轴颈中心发生较大的变化。单纯用瓦振信号进行判断,只能看到频谱。转轴信号可以提供丰富的碰摩信息。机组升降速的波特图、极坐标图和级联图、全频谱级联图。现场运行人员在启机过程常采取“听诊”的方法,对碰摩的确
14、定有时也是有用的。但要注意,由于高中压缸都是双层缸,有的机组低压缸也是双层缸,通流部分的碰摩声很难传出来,只有轴端汽封的碰摩声比较容易听到。因而,不能片面地将某一种方法的结论作为是否发生碰摩的决定性判据。,防止动静碰磨的技术措施:,根据机组的结构特点及运行工况,合理地设计和调整各部位的动静间隙认真分析转子和汽缸的膨胀特点和变化规律,在起动、停机和变工况时注意对胀差的控制和调整在机组起停过程中,应严格控制上下缸温差、蒸汽参数的变化、监视段压力及轴的窜动在运行中防止水冲击,停机后严防汽缸进冷汽冷水起动前及升速过程中,应严格监视转子晃度和振动,不得在超限增况下强行起动,油膜失稳和汽流激振,这是一种自
15、激振动。自激振动的发生以横向振动形式出现,以转子的低阶临界转速为振动频率,它的出现与转速或负荷密切相关。维持这种振动的能量来自于系统自身内部的某种机制。自激振动和强迫振动本质上的区别在于:自激振动中,维持振动的扰动力是由它自身的运动所产生并受其控制的,一旦运动停止,扰动力随之消失;自激振动以它本身的固有频率振动,与外界激振力频率无关。强迫振动中,持续作用的交变力独立于运动存在着,即使振动停止,它仍然会存在。系统振动的频率与交变作用力的频率相等。,旋转机械中可以产生涡动和振荡的最主要的振源:,转子内部阻尼;动压轴承和密封、油封;汽封;汽轮机组的气动耦合;顶隙激振;叶轮通流部分相互作用力;转子内滞
16、留液体;干摩擦碰摩;扭转变形涡动;弯扭耦合。,实际中时而可见的汽轮发电机组轴系动力失稳的类型:,滑动轴承油膜失稳造成的半速涡动和油膜振荡;汽流激振;转轴材料内阻引起的不稳定振动、转轴和套装叶轮之间的内摩擦以及中心孔进油造成的振动等。,机组振动问题的处理要点,采取了系列措施后,半周振动一步步减小。这些措施中,没有发现哪一项有十分显著的效果,也没有发现某项没有任何作用。修复三号瓦、前端加重、联轴器加重、调整联轴器罩分析后认为:机组的1、2号轴瓦是半速涡动的重要原因,联轴器、联轴器罩、不平衡重以及汽流力也都有直接影响。这些因素相互交织、综合作用,使得该机组与单一因素造成的机组振动不同,振动缺陷长期以
17、来难以判断和解决。高压转子的半频振动是非典型的油膜半速涡动。表现为和负荷有密切关系,受工频振动影响显著,与转速的联系不很明显。,结构共振,如果结构系统存在和激振力一致的固有频率,发生共振现象,这就是结构共振。汽轮发电机组的共振结构通常有三种形式:转子支撑结构系统;转子支撑缸体结构系统;转子支撑台板结构系统。上述三种结构形式中,如果支撑、缸体或台板存在与转子激振力一致的自振频率,在一定条件下会发生共振。造成共振的激振力大多数来自于转子的不平衡力,因此。共振频率与转速同频。,结构共振的特点,结构共振是小激振力的输入产生高振幅的输出。共振时的响应取决于结构系统的频响特性,激振力的大小不起关键作用。机
18、组结构设计时应使与转子关联的结构自振频率避开50Hz和其他一些特殊频率点、频率区,如发电机、励磁机结构应避开100Hz,汽轮机结构应避开25Hz、100Hz等。,结构共振的现场判断方法,根据振幅转速曲线中非临界转速的共振峰分析是否存在结构共振造成的共振点。进行结构频响函数的测试。这种测试一般采用锤击法。锤击法使用装有力传感器的激振锤敲击构件,用数据记录仪采集响应信号并用频谱分析仪作频谱分析,确定结构的固有频率和有关的响应特性。这是模态试验中的规范方法。,结构刚度不足,结构刚度不足是指机组支撑结构刚度过低。这里所说的“刚度”,是广义的,泛指转子支撑-缸体-基础整个系统的刚度。刚度不足多发生在低压
19、转子。原因是:设计阶段缺乏足够的刚度校核。一方面,这种计算有一定的难度,因为结构过于复杂,计算中所要用到的一些系数目前尚缺少,如结合面刚度等;另一方面,设计阶段没能进行充分的试验。和结构共振一样,设计存在一定的盲目性,最终导致结构动态特性出现问题。大机组发电机转子轴承多是端盖轴承,除了可能出现端盖的结构共振外,刚度设计不足也是可能发生的。汽轮机高压转子支承轴承通常位于前箱和中箱,箱式结构一般不会出现刚度偏低的问题。刚度不足不会成为机组振动的直接原因。在不平衡量很小的情况下,只要没有发生动静碰摩,即使支承刚度过低也不会出现振动问题。,现场表现形式,结构共振和结构刚度低在现场将表现为不同的形式:共
20、振表现:在整个转速范围内的某一点或几点瓦振绝对值增大,轴振与瓦振之比减小;刚度低的表现:振动在整个可变化的转速范围内偏大。但一般偏大的量不明显,且往往无从比较,实际中较难认定。可能使瓦振接近或大于轴振。而且它应该是同一类型机组的通病。真空、排汽缸温度、支承系统热状态等参数变化时,轴承座绝对标高或转轴相对轴瓦垂直位置会发生变化。在无精确测量轴承座绝对标高手段的条件下,要想准确地对刚度低做出判断是不易的。,联轴器不对中,联轴器不对中是汽轮发电机组振动常见故障。联轴器不对中是指相邻两根转轴轴线不在同一直线上;或不是一条连续的光滑曲线,在联轴器部位存在拐点或阶跃点。联轴器有三种不对中:平行不对中角度不
21、对中综合不对中它们会给机组带来下列后果:转子连接处将产生两倍频作用的弯矩和剪切力;相邻轴承将承受工频径向作用力。两种力的作用都将使转轴的轴承受力情况恶化,对结构和安全产生不利影响。,裂纹转子,汽轮发电机组转子出现裂纹的故障不多见,但仍偶有发生。这种故障一旦开始出现,对设备的威胁十分大。近些年来,国外已经发生了30多台大型汽轮发电机转轴裂纹事故,其中有些是灾难性的。转子裂纹产生的原因多是疲劳损伤。运行时间长的老机组,由于应力腐蚀,会在转子原本存在诱发点的位置产生微裂纹,其后随着环境因素的持续作用,微裂纹逐渐扩展,发展为宏裂纹。原始的诱发点通常出现在应力高且材料有缺陷的地方,如轴上应力集中点、加工
22、时留下的刀痕、划伤处、材质存在微小缺陷的部位等。随着机组使用寿命的延长和很多机组被用做调峰,转轴疲劳损伤急剧,裂纹出现的可能性在增加。,轴裂纹的检查&监测,检修时转子表面的探伤检查根据振动信号进行诊断和监测前一种方法是目前最重要的有效方法。,轴裂纹的监测内容(1),定转速下的工频和两倍频振幅及相位在机组稳态运行条件下,如果有一或两个轴承(转轴)的工频和两倍频振幅出现十分缓慢地增加,相位也发生缓慢地变化,在排除了转轴中心孔进油、轴承标高变化、联轴器中心变化、转动部件位置缓慢偏移等可能性之后,可以将其作为怀疑转子出现裂纹的一条根据。这里所指的“缓慢”,应该以周计或以月计,以数周或数月的振动记录进行
23、比较,对应于转轴裂纹的缓慢发展。除非裂纹发展的后期,振动可能逐日有所变化。对于怀疑出现裂纹的转子,观察和记录这种变化的有用的工具是极坐标图和时间趋势图。在极坐标图中可以给出一个振动容许变化的范围,考虑到振幅和相位的变化,这个变化区应该是一个扇形区。,轴裂纹的监测内容(2),变转速下的两倍频振幅及相位在机组升降速过程在临界转速一半处出现两倍频共振峰是转轴裂纹的关键判据,随裂纹深度的发展,这个共振峰值应该逐渐增大。发电机转子本体刚度不对称和联轴器不对中在升降速过程和裂纹产生完全相同的特征。这些故障往往难于区分。发电机转子本体刚度不对称产生的两倍频振动特征应该出现在发电机支撑或邻近结构部件上,两倍频
24、振幅、相位不会随时间变化;联轴器产生的两倍频特征,在消除或调整了联轴器的对中之后,应该随之有所变化。这些情况可以用来区别它们。扭转振动测量可用来诊断轴裂纹的扩展。扭转振动测量与横向振动测量一起在裂纹诊断中可以产生出一种新的方法,用于轴裂纹的早期检测。,断轴故障,转子在薄弱环节因裂纹等原因,使轴突然折断的严重事故。转子的薄弱部位有:中心孔、锻件的宏观缩孔和夹杂聚结区,轴颈、轴身表面的沟槽、与叶轮套装的边缘和联轴器螺栓等。断轴往往是从这些薄弱环节开始的。断轴起因:主要是材料缺陷,另还有腐蚀疲劳、疲劳损伤、过载损坏和热疲劳等几种。过载损坏:因实际载荷超过材料的屈服极限,使轴进人塑性失稳状态而断轴。如
25、超速、轴系共振、油膜振荡、电气故障引起的巨大冲击扭矩和汽缸进水均会使轴的载荷明显升高。过载损坏主要发生于联轴器螺栓和轴颈处,断口周围有明显的宏观塑性变形。,防止措施:,选用优质大锻件材料为了降低锻件中的氢和氧含量,应进行真空去气处理;另外,为了降低材料的脆性转变温度和提高断裂韧性,应对锻件进行水淬火热处理。合理设计轴结构,减小应力集中改善机组的设计和运行,防止轴系失稳、超速和汽缸进水,还要防止导致轴颈损伤的电气故障和断路器误操作采用高灵敏的探伤方法,定量显示轴内部的缺陷及其发展,并用断型力学评估对汽轮发电机组的轴系进行寿命在线监测,转子中心孔进油,汽轮机转子中心孔进油在现场时有发生。造成进油的
26、原因通常有两种可能,中心孔探伤后油没有及时清理干净,残存在孔内;大轴端部堵头不严,运转起来后由于孔内外压差使得润滑油被逐渐吸入孔内。,振动的特征,在振动特征上有一点是共同的,即工频振动增大的现象;工频振幅随时间缓慢增大,时间度量大约是数十分钟或12小时。出现的工况一般在定速后空负荷或带负荷过程;与热弯曲有类似的地方。这种故障的发现通常在新机调试阶段或机组大修后。往往初始的一、二次启动没有这种现象,后几次越来越明显。因此,判断的一个很重要的依据是将几次开机的振动值进行比较。,处理措施,一旦确定振动是由中心孔进油所造成的,只有取下轴端堵头,清理中心孔。,转子截面刚度不对称,汽轮发电机组轴系中可能出
27、现截面刚度不对称的是发电机转子。当这种转子水平放置时,在重力作用下的,在各个临界转速的一半时有一个响应峰,其振动频率是转速的2倍。转子刚度的不对称又使转子在旋转的一周中静挠曲线改变两次,这样,就会产生两倍频的激振力,这个激振力与电磁力无关,是转子的力学特性决定的。,采取的措施,转子两个主轴方向刚度差别越大,1/2临界转速的响应峰值和两倍频激振力也越高。为降低这个刚度差,通常在发电机转子本体的大齿表面沿轴向铣出一定数量的圆弧形横向月牙槽。槽深为转子本体半径的1/41/5。,油系统着火(oil system firing),汽轮发电机组的调节,润滑、密封油管路及设备漏油引起的火灾。一般表现为瞬时爆
28、炸式的着火,火势凶猛,如不能及时切断油源,火势将迅速 蔓延扩大,可造成烧毁设备和厂房以致人身伤亡,使电厂长时间丧失发电能力。油系统着火的两个基本条件:漏油油管路附近有热源,防止油系统着火的措施:,组合油箱,套装润滑油管,使用燃点大于350的抗燃油。油管路附近的高温管道,其保温应可靠,保温层表面温度一般不超过50。油系统尽量远离或低于高温管道布置,油系统安装完毕或大修后,应进行超压试验。油管路尽量减少法兰及阀门的数量,以减少漏油源。阀门、法兰接合面必须认真研刮。事故排油门的标志要醒目,油门把手处应有两个通道可以到达,且把手与油箱或密集的油管区间应有一定的距离,以防被火包围无法操作。操作把手在机组
29、运行时不宜上锁为避免机组轴瓦损坏,在惰走时间内,应维持润滑油泵运行,但不得开起高压油泵。当火势无法控制或危及油箱时,应立即开启事故排油门放油。,水冲击 ( water induction ),因水或冷蒸汽进入汽轮机而引起的事故。水冲击后果:推力轴承损坏、叶片损伤、汽缸和转子热应力裂纹、动静部分碰磨、高温金属部件永久性翘曲或变形,以及由此带来的汽轮发电机组振动,从而导致轴承、基础及油系统损伤等。是现代大型汽轮机发生较多且对设备损伤较为严重的恶性事故之一。,水冲击发生的原因,指水滴与高速旋转的叶片相撞击。水的来源有三:锅炉满水或减温用喷水过量,或主蒸汽及再热蒸汽管道在起动或低负荷时疏水不充分,都会
30、使蒸汽携带水份进入汽轮机;汽轮机本身在起动过程中的冷凝水或正常运行中温蒸汽的水滴,因疏水不当而滞留在机内;加热器、除氧器和凝汽器水侧管子泄漏,或汽侧流水不畅,使水倒灌进入汽轮机。,防止措施:,过热器、再热器喷水减温系统选用性能可靠的喷水调节阀,并在减温水管路上设置闭锁阀,在主燃料切断或汽轮机跳闸或负荷低于规定值时应自动关闭。选用高质量的给水调节阀和给水调节装置,防止锅炉满水。正确设计和安装疏水系统加热器、除氧器设置可靠的水位调节器和高水位报警及保护装置。在可能有水浸入处以及汽轮机内缸若干断面上下装设成对的监视热电偶,如发现上下温差异常,则表示下部有水立即停机或进行相应处理。加强对运行人员防水冲
31、击的训练。,水冲击的征兆:,蒸汽温度急剧下降管道振动负轴向推力增大金属温度骤降机组异常振动,等。,超速(over speed),发电机突然甩负荷或其他原因使机组转速飞升达到超速保护动作值。转速超过汽轮机超速保护动作值仍继续飞升的称:严重超速机组超速表明汽轮机调节系统有故障。严重超速可造成机组损坏。,超速原因,发电机甩负荷,汽轮机调速汽门未能及时关闭或关闭不严,均可引起超速。超速保护或主汽门拒动,均可造成机组的严重超速调节、保安系统设计或调整不当,调节、保安部套卡涩,汽门严密性差运行人员误操作等,是造成调节、保安系统工作不正常,引起机组超速或严重超速的主要因素。,防止超速措施:,认真进行调节、保安系统各项常规试验,定期检查汽门的严密性合理调整和整定调节、保安系统各项定值;加强蒸汽品质的监督,防止蒸汽带盐使汽门门杆结垢,油中带水使调节、保安部套锈蚀卡涩加强检修、运行的维护管理和人员的培训工作解列发电机时最好采用先手动脱扣,确认发电机电流倒进,再解列发电机,以避免由于汽门不严或卡涩造成机组超速或严重超速。,