1、 让更多的孩子得到更好的教育一元二次方程的应用-知识讲解要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位,它们数位上的单位从右至左依次分别为:1
2、、10、100、1000、,数位上的数字只能是 0、1、2、9 之中的数,而最高位上的数不能为 0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为 a,十位上数为 b,百位上数为 c,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差 1.如:三个连续整数,设中间一个数为 x,则另两个数分别为 x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差 2.如:三个连续偶数(奇数),设中间一个数为 x,则另两个数分别为 x-2,x+2.2.平均变化率问题列一
3、元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为 (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(1)nab(2)降低率问题:平均降低率公式为 (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)()n3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.让更多的孩子得到更好的教育期数:存入银行的时间叫期数.利率:每个期数内的利息
4、与本金的比叫利率.(2)公式:利息=本金利率期数利息税=利息税率本金(1+利率期数)=本息和本金1+利率期数(1-税率)=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.6.行程问题【典型例题】类型一、数字问题1已知两个数的和等于 12,积等于 32,求这两个数是多少举一反三:1、有一个两位数等于其数字之积的 3 倍,其十位数字比个位数字少 2,求这个两位数.2、
5、有一个两位数,个位数字与十位数字的和为 14,交换数字位置后,得到新的两位数,比这两个数字的积还大 38,求这个两位数让更多的孩子得到更好的教育类型二、平均变化率问题2 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有 81 台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3 轮感染后,被感染的电脑会不会超过 700 台?举一反三:1、有一人患了流感,经过两轮传染后共有 121 人患了流感,按照这样的速度,第三轮传染后,患流感的人数是( )A1331 B1210 C1100 D10002、某产品原来每件是 600 元,由于连续两次降
6、价,现价为 384 元,如果两次降价的百分数相同,求平均每次降价率.类型三、利润(销售)问题3某商店从厂家以每件 21 元的价格购进一批商品,该商店可以自行定价,若每件商品售价为 a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的 20%,商店计划要赚 400 元,需要卖出多少件商品?每件商品售价多少元?举一反三:【变式】某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫降价 1 元,商场平均每天可多售出 2 件(1)若商场平均每天销售这种衬衫的盈利要达到 1200 元,每
7、件衬衫应降价多少元?(2)每天衬衫降价多少元时,商场平均每天盈利最多?让更多的孩子得到更好的教育类型四、形积问题4如图所示,某幼儿园有一道长为 16 米的墙,计划用 32 米长的围栏靠墙围成一个面积为 120 平方米的矩形草坪 ABCD,求该矩形草坪 BC 边的长类型五、行程问题5. 一辆汽车以 20m/s 的速度行驶,司机发现前方路面有情况,紧急刹车后又滑行 25m 后停车(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到 15m 时约用了多少时间(精确到 0.1s)?让更多的孩子得到更好的教育【巩固练习一】一、选择题1在一幅长 80cm、宽 50
8、cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示如果要使整个挂图的面积是 5400cm2,设金色纸边的宽为 x cm,那么 x 满足的方程是( )Ax 2+130x-14000 Bx 2-65x-3500 Cx 2-130x-14000 Dx 2+65x-35002为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10cm2提高到 12.1m2,若每年的年增长率相同,则年增长率为( )A9% B10% C11% D12%3某农机厂四月份生产零件 50 万个,第二季度共生产零件 182 万个,设该厂五、六月份平均每月的增长率为 x,那么 x 满
9、足的方程是( )A50(1+x) 2182 B50+50(1+x)+50(1+x) 2182C50(1+2x)182 D50+50(1+x)+50(1+2x)1824一个矩形的长是宽的 3 倍,若宽增加 3cm,它就变成正方形.则矩形面积是( )A 2cm3 B 29c C 27cm4 D 27c5为执行“两免一补”政策,某地区 2010 年投入教育经费 2500 万元,预计 2012 年投入 3600 万元设这两年投入教育经费的年平均增长率为 x,则下列方程正确的是( )A2500(1+x) 23600 B2500x 23600C2500(1+x%)3600 D2500(1+x)+2500(
10、1+x) 236006一个跳水运动员从距离水面 10 米高的跳台向上跳起 0.5 米,开始做翻滚动作,它在空中每完成一个动作需要时间 0.2 秒,并至少在离水面 3.5 米处停止翻滚动作准备入水,最后入水速度为 14 米/秒,该运动员在空中至多做翻滚动作( )A3 个 B4 个 C5 个 D6 个二、填空题7某商场销售额 3 月份为 16 万元,5 月份 25 万元,该商场这两个月销售额的平均增长率是_8若两数的和是 2,两数的平方和是 74,则这两数为_9大连某小区准备在每两幢楼房之间开辟面积为 300m2的一块长方形绿地,并且长比宽多 10m,设长方形绿地的宽为 xm,则可列方程为_10菱
11、形 ABCD 的一条对角线长 6,AB 的长是方程 x2-7x+120 的一个根,则菱形 ABCD 的周长为_11有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了 个人?12.小明家为响应节能减排号召,计划用两年时间,将家庭每年人均碳排放量由目前的 3125kg 降至2000kg(全球人均目标碳排放量),则小明家未来两年人均碳排放量平均每年需降低的百分率是让更多的孩子得到更好的教育_ 三、解答题13用长 12m 的一根铁丝围成长方形(1)如果长方形的面积为 5m2,那么此时长方形的长是多少?宽是多少?如果面积是 8m2呢?(2)能否围成面积是 10m2的长方形
12、?为什么?(3)能围成的长方形的最大面积是多少?14. 从一块长 80cm,宽 60cm 的长方形铁片中间截去一个小长方形,使剩下的长方形四周宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个宽度15常德市工业走廊南起汉寿县太子庙镇,北玉桃源县盘塘镇创元工业园,在这一走廊内的工业企业2008 年完成工业总产值 440 亿元,如果要在 2010 年达到 743.6 亿元,那么 2008 年到 2010 年的工业总产值年平均增长率是多少?常德工业走廊建设发展规划纲要(草案)确定 2012 年走廊内工业总产值要达到 1200 亿元,若继续保持上面的增长率,该目标是否可以完成?让更多的孩子得到更
13、好的教育【巩固练习二】一、选择题1.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡 132 张,则这个小组共有( )A11 人 B12 人 C13 人 D14 人2上海世博会的某纪念品原价 168 元,连续两次降价 a%后售价为 128 元,下列所列方程中正确的是 ( )A168(1+a%) 2128 B168(1-a%) 2128 C168(1-2a%) 2128 D168(1-a 2%)1283从一块长 30cm,宽 12cm 的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积为 296cm2,则截去小正方形的边长为 ( )A1 cm B2 cm C3 cm
14、D4 cm4甲、乙两人分别骑车从 A、B 两地相向而行,甲先行 1 小时后,乙才出发,又经过 4 小时两人在途中的 C 地相遇,相遇后两人按原来的方向继续前进.乙在由 C 地到达 A 地的途中因故停了 20 分钟,结果乙由 C 地到达 A 地时比甲由 C 地到达 B 地还提前了 40 分钟,已知乙比甲每小时多行驶 4 千米,则甲、乙两人骑车的速度分别为( )千米/时.A2,6 B12,16 C16,20 D20,245某农户种植花生,原来种植的花生亩产量为 200 千克,出油率为 50(即每 100 千克花生可加工成花生油 50 千克)现在种植新品种花生后,每亩收获的花生可加工成花生油 132
15、 千克,其中花生出油率的增长率是亩产量的增长率的 则新品种花生亩产量的增长率为 ( )A20 B30% C50% D120%6从盛满 20 升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精 5 升则每次倒出溶液的升数为( )A5 B6 C8 D10二、填空题7某公司在 2009 年的盈利额为 200 万元,预计 2011 年盈利额将达到 242 万元,若每年比上一年盈利额增长的百分率相同,那么该公司在 2010 年的盈利额为_万元 8有一间长 20 m,宽 15 m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同
16、,则留空的宽度为_9一块矩形耕地大小尺寸如图 1 所示,要在这块地上沿东西、南北方向分别挖 3 条和 4 条水渠如果水渠的宽相等,而且要保证余下的可耕地面积为 8700m2,那么水渠应挖的宽度是 米.10有一个两位数,它的十位数字与个位数字之和是 8,如果把十位数字与个位数字调换后,所得的两让更多的孩子得到更好的教育位数乘原来的两位数就得 1855,则原来的两位数是 11某省十分重视治理水土流失问题,2011 年治理水土流失的面积为 400 km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到 2013 年年底,使这三年治理水土流失的面积达 1324
17、 km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是 12如图所示,已知 A、B、C、D 为矩形的四个顶点,AB16cm,AD6cm,动点 P、Q 分别从点 A、C同时出发,点 P 以 3cm/s 的速度向点 B 移动,一直到点 B 为止,点 Q 以 2cm/s 的速度向 D 移动问:(1)P、Q 两点从出发开始到 秒时,四边形 PBCQ 的面积是 33cm2;(2)P、Q 两点从出发开始到 秒时,点 P 与点 O 间的距离是 10cm.三、解答题13如图所示,有长为 40m 的篱笆,一面利用墙(墙长 15m),围成长方形花圃设花圃的长 BC 为 xm,花圃的面积能围成 182m
18、2吗?此时 BC 多长?14.学校计划用地面砖铺设教学楼前矩形广场的地面 ABCD,已知矩形广场地面的长为 100 米,宽为 80米,图案设计如图所示,广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖(1)要使铺白色地面砖的面积为 5200 平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米 30 元,铺绿色地面砖的费用为每平方米 20 元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?让更多的孩子得到更好的教育15如图所示,AOOB50cm,OC 是一条射线,OCAB,一只蚂蚁由 A 点以 2cm/s 的速度向 B 爬行,同时另一只蚂蚁由 O 点以 3 cm/s 的速度沿 OC 方向爬行,是否存在这样的时刻,使两只蚂蚁与 O点组成的三角形的面积为 450cm2?