收藏 分享(赏)

六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc

上传人:天天快乐 文档编号:354203 上传时间:2018-03-31 格式:DOC 页数:38 大小:1.67MB
下载 相关 举报
六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc_第1页
第1页 / 共38页
六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc_第2页
第2页 / 共38页
六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc_第3页
第3页 / 共38页
六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc_第4页
第4页 / 共38页
六年级下数学期末试题小升初总复习数学归类讲解及训练(下-含答案)人教新课标.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、小学数学总复习专题讲解及训练(九)教学内容:期中复习及考前模拟复习要点:(一)数与代数1、百分数的应用百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。2、比例的有关知识比例的知识有比例的意义、比例的基本性质和解比例。这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。3、成正比例和成反比例的量教学正比例和反比例,着重理解正

2、比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。根据标准的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。 (二)空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。这个内容安排在第三单元里,结合比例的知识进行教学。3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度” “南偏西几度”的形式量化描述物体所在的具体方向

3、,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。知识点梳理(一)数与代数1、百分数的应用(1)求一个数比另一个数多(少)百分之几的实际问题要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量另一个数 例题:六年级男生有 180 人,女生有 160 人,男生比女生多百分之几?女生比男生少百分只几?男生比女生多的人数 女生人数 = 百分之几 (180 - 160) 160 = 12.5女生比男生少的人数 男生人数 = 百分之几 (180 - 160) 180 11.1(2)纳税问题要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 =

4、收入 税率例题:张强编写的书在出版后得到稿费 1400 元,稿费收入扣除 800 元后按 14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?(1400 - 800)14% = 84(元)(3)利息问题要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 利率 时间例题:叔叔今年存入银行 10 万元,定期二年,年利率 4.50% ,二年后到期,扣除利息税 5% ,得到的利息能买一台 6000 元的电脑吗?100000 4.5% 2 (1 - 5%) = 8550(元)8550 元 6000 元 得到的利息能买一台 6

5、000 元的电脑(4)有关折扣问题要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 折数。例题:一种衣服原价每件 50 元,现在打九折出售,每件售价多少元?九折就是 90%,5090%=50 0.9=45(元)例题:一种衣服现在打九折出售,现在售价是 45 元,每件的原价是多少元?九折”就是 90%,90% = 45 =50(5)列方程解稍复杂的百分数实际问题要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。例题:果

6、园里的梨树和苹果树共有 360 棵,其中的苹果树的棵树是梨树的棵树的 20%。苹果树和梨树各有多少棵?解:设梨树有棵,苹果树有 20%棵 + 20 = 360 = 30020 = 300 20 = 60答:梨树有 300 棵,苹果树有 60 棵。例题:某工厂六月份用煤 60 吨,六月份比五月份少用煤 25,五月份用煤多少吨?解:设五月份用煤吨 - 25 = 60 = 80答:五月份用煤 80 吨。2、比例的有关知识(1)比例的意义要点:表示两个比相等的式子叫做比例。例题:应用比例的意义判断 6.4 : 4 和 9.6 : 6 能否组成比例?因为:6.4 : 4 = 6.4 4 = 1.6 9.

7、6 : 6 = 9.6 6 = 1.6所以:6.4 : 4 = 9.6 : 6(2)比例的基本性质要点:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项;在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。例题: 3 :8 = 18 :48 3 48 = 8 18内项 外项例题:运用比例的基本性质判断 36 :18 和 05 :025 能否组成比例?因为 3.6 0.25 = 0.9 1.8 0.5 = 0.9所以 36 :18 = 05 :025例题:从 12 的因数中任意选出 4 个数,再组成 8 个比例式。因为:12 = 1 12 = 2 6

8、= 3 4 所以从 12 的因数中任意选出两组 4 个数并运用比例的基本性质可以组成 8 个不同的比例。2 6 = 3 4(2)(3)= (4)(6) (3)(2)= (6)(4)(2)(3)= (4)(6) (3)(2)= (6)(4)(6)(4)= (3)(2) (4)(6)= (2)(3)(6)(4)= (3)(2) (4)(6)= (2)(3)(3)解比例要点:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。例题:3 : 8 = : 40 = x98.058 = 3 40 4.5 = 9 0.88 = 120 4.5 = 7

9、.2 = 15 = 1.6(4)比例尺要点:图上距离和实际距离的比,叫做这幅图的比例尺。比例尺 = ,比例尺有两种形式:数值比例尺和线段比例尺。实 际 距 离图 上 距 离例题:在一幅某乡农作物布局图上,20 厘米表示实际距离 16 千米。求这幅图的比例尺。16 千米 = 1600000 厘米 = 1602801例题:说出下面比例尺表示的意思。这是线段比例尺,它表示图上 1 厘米的距离代表实际距离 200 千米。例题:在一幅比例尺是 1:500000 的地图上,量得甲、乙两城的距离是 12.5 厘米。甲、乙两城实际相距多少千米? 方法 1、12.5500000 = 6250000(厘米)= 6

10、2.5(千米)方法 2、2.55 = 62.5(千米)方法 3、12.5 = 12.5500000 = 6250000(厘米)= 62.5 千米501解:设甲、乙两城实际相距厘米。= 5.1201 = 12.5 500000 = 62500006250000(厘米)= 62.5 千米(5)面积变化要点:把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( )后,放大n1(或缩小)后与放大(或缩小)前图形的面积比是 n:1(或 1:n) 。例题:下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。量得小长方形的长是 2.5

11、 厘米,宽是 1 厘米;大长方形的长是 7.5 厘米,宽是 3 厘米。大长方形与小长方形长的比是 7.5 : 2.5 = 3 : 1,宽的比是 3 : 1。= = = 9 : 1 = 3 : 1小 长 方 形 的 面 积大 长 方 形 的 面 积 5.237.大长方形与小长方形面积的比是 9 : 1。3、成正比例和成反比例的量(1)正比例的意义和图像要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用这样的式子

12、来表示: = K(一定)用“描点法”可以得到正比例的图像,xy正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?表格 1数量/本1 3 6 8 10 20 总价/元4 12 24 32 40 80 = 4, = 4, = 4 1326因为 = 单价(一定) ,所以单价一定时,总价和数量成正比例。数 量总 价例题:在圆柱的侧面积、底面周长、高这三种量中当( )一定时, ( )与( )成正比例;当( )一定时, ( )与( )成正比例。例题:某造纸厂每小时造纸 1.5 吨,2 小时、3 小时各造纸多少吨

13、?造纸时间/时1 2 3 4 造纸吨数/吨1.5 根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨6 5 4 3 2 1 01 2 3 4 5 6 7 时间/时造纸吨数与造纸时间成正比例吗?为什么?因为 = 每小时造纸吨数(一定) ,所以每小时造纸吨数一定时,造纸吨数与造造 纸 时 间造 纸 吨 数纸时间成正比例。根据图像判断,5 小时造纸多少吨?根据图像判断,5 小时造纸 7.5 吨(2)反比例的意义要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。如果用字

14、母和分别表示两种相关联的量,用表示它们的积,反比例关系可以用这样的式子来表示: = K(一定) 。例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?用 60 元钱购买笔记本,笔记本的单价和可以购买的数量如下表:单价/元1.5 2 3 4 5 6 数量/本40 30 20 15 12 10 1.5 40 = 60 ,2 30 = 60 ,4 15 = 60 因为单价 数量 = 总价(一定) ,所以总价一定时,单价和数量成反比例。例题:在圆柱的侧面积、底面周长、高这三种量中当( )一定时, ( )与( )成反比例。(二)空间与图形1、圆柱和圆锥(1)圆柱和圆锥的特征圆柱 圆锥底

15、面 两个底面完全相同,都是圆形。 一个底面,是圆形。侧面 曲面,沿高剪开,展开后是长方形。曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。(2)圆柱的表面积和体积要点:圆柱的侧面积 = 底面周长 高圆柱的表面积 = 侧面积 + 底面积 2圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 高,用含有字母的式子表示是:V = sh 或者 V = rh 。例题:用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)侧面积:3.

16、14 3 15 = 141.3(平方分米) 142(平方分米)例题:一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部 抹上水泥。如果每平方米要用水泥 20 千克,一共要用多少千克水泥?底面积:25.12 3.14 2 = 4(米)3.14 4 = 50.24(平方米)侧面积:25.12 4 = 100.48(平方米)表面积:50.24 + 100.48 = 150.72(平方米)水泥质量: 150.72 20 = 3014.4 千克例题:在直径 0.8 米的水管中,水流速度是每秒 2 米,那么 1 分钟流过的水有多少立方米?3.14 (0.82) 2 60 =

17、 60.288(立方米)(3)圆锥的体积要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。即 V = sh 或者 V = rh 。3131例题:一个圆锥体的体积是 a 立方米,和它等底等高的圆柱体体积是( )例题:把一段圆钢切削成一个最大的圆锥体,圆柱体体积是 6 立方米,圆锥体体积是( ) 立方米例题:一个圆锥形沙堆,高是 1.5 米,底面半径是 2 米,每立方米沙重 1.8 吨。这堆沙约重多少吨?3.14 2 1.51.8 = 11.304(吨)312、图形的放大或缩小要点:把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。例题:一张长方

18、形图片,长 12 厘米,宽 9 厘米。按 1 : 3 的比缩小后,新图片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。一张长方形图片,长 12 厘米,宽 9 厘米。按 1 : 3 的比缩小后,新图片的长是( 4 )厘米,宽是( 3 )厘米,这张图片( 形状 )不变,大小( 变了 )。例题:一块正方形的花手帕,边长 10 厘米,将其按( )的比放大后,边长变为 30 厘米。一块正方形的花手帕,边长 10 厘米,将其按(3 : 1 )的比放大后,边长变为 30 厘米。例题:按 2 : 1 的比画出平行四边形放大后的图形,按 1 : 3 的比画出长方形缩小后的图形。3、确定位置等

19、内容要点:知道了物体的方向和距离,就能确定物体的位置。根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。例题:下图是按 150000 的比例尺绘出的方位图。说一说商店、公园、电影院的位置。电影院30 40 广场 公园 商店公园在广场的东面( 0.75 )千米处。量得公园到广场的图上距离是 1.5 厘米,1.550000 = 75000 厘米 = 0.75 千米电影院在广场的( 北 )偏( 东 ) ( 60 )方向( 0.75 )千米处。商店在广场的( 南偏西

20、 50 方向 1.5 千米处 ) 。量得商店到广场的图上距离是 3 厘米例题:下图是某市旅游 1 号车行驶的线路图,请根据线路图填空。旅游 1 号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。由绿博园向南偏( ) ( )的方向行( )千米到达购物中心,再向北偏( ) ( )的方向行( )千米到达人民公园。旅游 1 号车从起点站出发,向( 东 )行驶到达青水公园,再向( 北 )偏(东) (40)的方向行(1.8 )千米到达抗战纪念碑。由绿博园向南偏(东) (60)的方向行(1.7)千米到达购物中心,再向北偏( 东 )(70)的方向行(1.5)

21、千米到达人民公园。小学数学总复习专题讲解及训练(九)模拟试题一、填空。1、( )15=0.8=( )%=( )成2、篮球个数是足球的 125,篮球比足球多( )。 3、一个圆锥的体积是 76 立方厘米,底面积是 19 平方厘米。这个圆锥的高是( )厘米。4、如果 3a=4b,那么 a : b = ( ):( ) 。5、 一个直角三角形中,两个锐角度数的比是 3 : 2 ,这两个锐角分别是( )度、 ( )度。6、 12 的约数中可以选出 4 个数组成一个比例,请你写出比值不同的两组:( ) 、( ) 。 7、 一个比例里,两个外项正好互为倒数,其中一个内项是 2.5,另一个内项是( ) 。8、

22、一个圆柱的底面半径为 2 厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。9、一个长为 6 厘米,宽为 4 厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( )厘米,高为( )厘米的( )体,它的体积是( )立方厘米。10、 如左图所示,把一个高为 10 厘米的圆柱切成若干等分,拼成一个近似的长方体。如果这个长方体的底面积是 50 平方厘米,那么圆柱体积是( )立方厘米二、选择。1、圆的面积和它的半径 . A、成正比例 B、成反比例 C、不成比例 2、下列说法正确的有 。A、表示两个比相等的式子叫做比例。 B、互质的两个数没有公约数。C、分子一定,分数值和分母成反比例。D

23、、圆锥的体积等于圆柱体积的 。313、圆柱的底面半径扩大 2 倍,高不变。它的底面积扩大 倍,侧面积扩大 倍,体积扩大 倍。A 2 、 B 4 、 C 8 、 D 16 4.六(2)班人数的 40是女生,六(3)班人数的 45是女生,两班女生人数相等。那么六(2)班的人数_六(3)班人数。 A. 小于 B. 等于 C .大于 D都不是5把一团圆柱体橡皮泥揉成一个与它等底的圆锥体,高将 _A.扩大 3 倍 B.缩小 3 倍 C.扩大 6 倍 D.缩小 6 倍三、计算。1、用递等式计算。 (12 分)0.164( ) 1.7 3.985 4.83.96.148341103542、解方程。(6 分)

24、宜陵农业银行(定期)储蓄存单帐号币种人民币 金额(大写)五千元 小写¥5000 元存入期 存期 年利率 起息日 到期日2005 年 3 月 20日 3 年 522%2003 年 4 月1 日2008 年 3 月 20日2X30.9=24.7 0.3 :x=17 :51 =0.5X2.3四、画一画。 (5 分)学校的操场长 150 米,宽 60 米,请你根据比例尺在下面的空白处画出操场的平面图。 (并请你标明比例尺及长宽的厘米数) (1:3000)五、解决实际问题(25 分)1、下面是张大爷的一张存单,如果到期要交 5%的利息税,他的存款到期时实际可得多少元利息?2、一个圆柱形的无盖水桶,底面半径 4 分米,高 6 分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数) ;如果用来装水,可以装多少千克水?(每升水重 1 千克)3、一条公路已经修了它的 ,再修 300 米,就修好这条公路的一半。这条公路长多少米?524有一个近似的圆锥形砂堆重 3.6 吨,测得高是 1.2 米,如果每吨砂的体积是 0.6 立方米。这堆砂的底面积是多少平方米?5、用塑料绳捆扎一个圆柱形的蛋糕盒(如下图) ,打结处正好是底面圆心,打结用去绳长 25 厘米。() 、扎这个盒子至少用去塑料绳多少厘米?() 、在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初级教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报