1、教学资料教育精品资料按住 Ctrl 键单击鼠标打开名师教学视频全册播放教学资料1.1 算法与程序框图(共 3 课时)1.1.1 算法的概念(第算法的概念(第 1 课时)课时)一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中
2、已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例 1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例 2:给出求 1+2+3+4+5 的一个算法.解: 算法 1 按照逐一相加的程序进行第一步:计算 1+2,得到 3;第二步:将第一步中的运算结果 3 与 3 相加,得到 6;第三步:将第二步中的运算结果 6 与 4 相加,得到 10;第四步:将第三步中的运算结果 10 与 5 相加,得到 15.算法 2
3、 可以运用公式 1+2+3+n= 2)1(直接计算第一步:取 n=5;第二步:计算 2)1(;第三步:输出运算结果.(说明算法不唯一)例 3:(课本第 2 页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性)例 4:用“待定系数法”求圆的方程的大致步骤是:第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于 a, b, r或 D, E, F的方程组;第三步:解出 , , r或 , , ,代入标准方程或一般方程.教学资料三、算法的概念通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这
4、些步骤来解决问题,通常把这些在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程例 6:(课本第 4 页例 2)练习 2:设计一个计算 1+2+100 的值的算法.解:算法 1 按照逐一相加的程序进行第一步:计算 1+2,得到 3;第二步:将第一步中的运算结果 3 与 3 相加,得到 6;第三步:将第二步中的运算结果 6 与 4 相加,得到 10;第九十九步:将第九十八步中的运算结果 4950 与 100 相加,得到 5050.算法 2 可以运用公式 1+2+3+n= 2)1(直接计算第一步:取 n=100;第二步:计算 )1(;第三步:输出运算结果.练习 3:(课本第 5
5、 页练习 1)任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:第一步:输入任意正实数 r;第二步:计算 2S;第三步:输出圆的面积 .五、课堂小结五、课堂小结1. 算法的特性:算法的特性:有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.输入:一个算法中有零个或多个输入步骤称为解决这些问题的算法步骤称为解决这些问题的算法教学资料输出:一个算法中有一个或多个输出.2
6、. 描述算法的一般步骤:描述算法的一般步骤:输入数据.(若数据已知时,应用赋值;若数据为任意未知时,应用输入)数据处理. 输出结果.1.1.2 程序框图(第 2 课时)二、程序框图的有关概念1. 两道回顾练习的算法用程序框图来表达,引入程序框图概念.2. 程序框图的概念程序框图又称流程图,是一种规定的图形、指向线及文字说明来准确、直观地表示算法的图形.3. 构成程序框图的图形符号及其作用(课本第 6 页)4. 规范程序框图的表示:使用标准的框图符号.框图一般按从上到下、从左到右的方向画,流程线要规范.除判断框外,大多数框图符号只有一个进入点和一个退出点.一种判断是“是”与“否”两分支的判断,而
7、且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.在图形符号内描述的语言要非常简练清楚.三、顺序结构顺序结构是由若干个依次执行的处理步骤组成.例 1:(课本第 9 页例 3)练习 1:交换两个变量 A 和 B 的值,并输出交换前后的值.解:算法如下: 程序框图:第一步:输入 A,B 的值.第二步:把 A 的值赋给 x.第三步:把 B 的值赋给 A.第四步:把 x 的值赋给 B.第五步:输出 A,B 的值.输入输出语句输入A,B输出A,B开始结束A=Bx=AB=x教学资料四、条件结构根据条件判断,决定不同流向.例 2:(课本第 10 页例 4)练习 2:有三个整数 a, b, c,由键盘
8、输入,输出其中最大的数.解:算法 1第一步:输入 , , ;第二步:若 ,且 ;则输出 a;否则,执行第三步;第三步:若 cb,则输出 b;否则,输出 c.算法 2第一步:输入 a, , ;第二步:若 ,则 t;否则, bt;第三步:若 ct,则输出 ;否则,输出 c.练习 3:已知 32)(xf,求 )5(f的值. 设计出解决该问题的一个算法,并画出程序框图.解:算法如下:第一步: ;第二步: 321xy;第三步: 5;第四步: 2;第五步: 21;第六步:输出 y.练习 4:设计一个求任意数的绝对值的算法,并画出程序框图.语句1满足条件?是否语句2教学资料解:第一步:输入任意实数 x;第二
9、步:若 0,则 y;否则 xy;第三步:输出 .练习 5:(课本第 18 页例 6)设计一个算法,使得任意输入的 3 个整数按从大到小的顺序输出,并画出程序框图.练习 6:五、课堂小结1. 画程序框图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为程序框图;2. 理解条件结构的逻辑以及框图的规范画法,条件结构主要用在判断、分类或分情况的问题解决中.1.1.2 程序框图(第 3 课时)一、回顾练习引例:设计一个计算 1+2+100 的值的算法.解:算法 1 按照逐一相加的程序进行第一步:计算 1+2,得到 3;第二步:将第一步中的运算结果 3 与 3 相加,得到 6;第三步:将第
10、二步中的运算结果 6 与 4 相加,得到 10;第九十九步:将第九十八步中的运算结果 4950 与 100 相加,得到 5050.简化描述: 进一步简化:第一步:sum=0; 第一步:sum=0,i=1;第二步:sum=sum+1; 第二步:依次 i 从 1 到 100,反复做sum=sum+i;第三步:sum=sum+2; 第三步:输出 sum.第四步:sum=sum+3;教学资料第一百步:sum=sum+99;第一百零一步:sum=sum+100第一百零二步:输出 sum.根据算法画出程序框图,引入循环结构.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行
11、某一处理步骤的情况,这种结构称为循环结构.循环体:反复执行的处理步骤称为循环体.计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习 1:画出引例直到型循环的程序框图.当型循环与直到循环的区别:当型循环可以不执行循环体,直到循环至少执行一次循环体.当型循环先判断后执行,直到型循环先执行后判断. 对同一算法来说,当型循环和直到循环的条件互为反条件.练习
12、2:1.1.1 节例 1 的算法步骤的程序框图(如图)说明:为了减少难点,省去 flag 标记;解释赋值语句“ 2d”与“ 1d”,还有“ 1nd;满足条件?否循环体是满足条件?是否循环体教学资料简单分析.练习 3:画出 10321 的程序框图.小结:画循环结构程序框图前:确定循环变量和初始条件;确定算法中反复执行的部分,即循环体;确定循环的转向位置;确定循环的终止条件.三、条件结构与循环结构的区别与联系区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行.联系:循环结构是通过条件结构来实现.例 1:(课本第 10 页的探究 )画出用二分法求方程 02x的近似根(精确度为
13、0.005)的程序框图,并指出哪些部分构成顺序结构、条件结构和循环结构?练习 4:设计算法,求使 205321n 成立的最小自然数 n的值,画出程序框图.练习 5:输入 50 个学生的考试成绩,若 60 分及以上的为及格,设计一个统计及格人数的程序框图.练习 6:指出下列程序框图的运行结果 五、课堂小结1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;2. 理解当型循环与直到循环的逻辑以及区别:当型循环可以不执行循环体,直到循环至少执行一次循环体.当型循环先判断后执行,直到型循环先执行后判断. 对同一算法来说,当型循环和直到循环的条件互为反条件.3. 画循环结构程序框图前:确定循环变量
14、和初始条件;确定算法中反复执行的部分,即循环体;确定循环的转向位置;确定循环的终止条件.4. 条件结构与循环结构的区别与联系:区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行.联系:循环结构是通过条件结构来实现.1.2.1 输入语句、输出语句和赋值语句(第 1 课时)一、回顾知识教学资料顺序结构及其框图二、输入语句、输出语句和赋值语句 例 1:(课本第 21 页例 1)分析:首先画出解决该问题算法的程序框图,并解析 BASIC 语言中的数学运算符号表示.如: 32写成 2*3, 35写成 53, 3写成 5/3,5 除以 3 的余数为“5 MOD 3” ,5 除以 3
15、 的商为“53” , 2写成“SQR(2) ”, x写成“ ABS( x) ”等等.1. 输入语句的一般格式INPUT “提示内容” ;变量说明:输入语句的作用是实现算法的输入信息功能.“提示内容”提示用户输入什么样的信息,用双引号.提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“, ”隔开,如“INPUT “a=,b=,c=”;a,b,c”.变量是指程序在运行是其值是可以变化的量,如中的 a,b,c 都是变量,通俗把一个变量比喻成一个盒子,盒子内可以存放数据,可随时更新盒子内的数据.如中当依次输入了1,2,3 程序在运行时把输入的值依次赋给 a,b,c,即 a=1,
16、b=2,c=3.例如,输入一个学生数学、语文、英语三门课的成绩:INPUT “Maths,Chines ,English ”;a ,b,c输入任意整数 n:INPUT “n=”;n2. 输出语句的一般格式PRINT “提示内容” ;表达式说明:输出语句的作用是实现算法的输出结果的功能,可以在计算机的屏幕上输出常量、变量的值和系统信息.“提示内容”提示用户输出什么样的信息,用双引号.提示内容与表达式之间用分号“;”隔开. 要输出表达式中的字符,需要用双引号“” ,如:PRINT “提示内容:” ;“a+2” ,这时屏幕上将显示:提示内容:a+2.例如,下面的语句可以输出斐波那契数列:PRINT“
17、The Fibonacci Progression is:”;1 1 2 3 5 8 13 21 34 55 “”这时屏幕上将显示:The Fibonacci Progression is: 1 1 2 3 5 8 13 21 34 55 例 2:(课本第 23 页例 2)分析:补充写出屏幕上显示的结果.教学资料3.赋值语句的一般格式变量=表达式说明:赋值语句的作用是将表达式所代表的值赋给变量.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样;赋值号的左右两边不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,如 a=b 表示用 b 的值代替变量 a 原先的值.格式中右边
18、“表达式”可以是一个数据、常量和算式,如果“表达式”是一个算式时,赋值语句的作用是先计算出“=”右边表达式的值,然后将该值赋给“=”左边的变量,如若 a=1,b=2,c=a+b 是指先计算 a+b 的值 3 赋给 c,而不是将 a+b 赋给 c. 例 3:(课本第 25 页例 3)分析:先画出程序框图,重点分析“A=A+15”.例 4:(课本第 15 页例 4)分析:先画出程序框图.4. 输入语句、输出语句和赋值语句之间的区别(1)输入语句和赋值语句的区别:输入语句是外部直接给程序中变量赋值;赋值语句是程序内部运行时给变量赋值,先计算右边的表达式,得到的值赋给左边的变量.(2)输入语句和输出语
19、句的区别:输入语句是外部直接给程序中变量赋值;输出语句是程序运行的结果输出到外部,先计算表达式,得到结果输出.三、课堂练习1. (课本第 24 页练习 1) (要求:先画出程序框图)2. (课本第 24 页练习 2) (要求:先画出程序框图)3. (课本第 24 页练习 3) 4. (课本第 24 页练习 4) (要求:先画出程序框图)5. (课本第 33 页习题 1.2A 组第 1 题) 6.四、课堂小结1. 理解输入语句、输出语句和赋值语句的一般格式,注意标点符号的使用以及数学符号的表示和数学式子的表示;2. 赋值语句与数学中等号的区别.3. 编写一个程序的步骤:首先用自然语言描述问题的一
20、个算法,然后把自然语言转化为程序框图,最后把程序框图转化为程序语句.4. 输入语句和赋值语句的区别:输入语句是外部直接给程序中变量赋值;赋值语句是程序内部运行时给变量赋值,先计算右边的表达式,得到的值赋给左边的变量.5. 输入语句和输出语句的区别:输入语句是外部直接给程序中变量赋值;输出语句是教学资料程序运行的结果输出到外部,先计算表达式,得到结果输出.1.2 基本算法语句(共 3 课时) (有条件在电脑室上)1.2.2 条件语句(第 2 课时)一、回顾知识1. 什么是条件结构?画出其程序框图.2.练习:写出解不等式 bax)0(的一个算法,并画出程序框图.二、条件语句 1. 把回顾练习中的程
21、序框图转化为程序语句.INPUT “a=”;aINPUT “b=”;b IF a0 THENPRINT “不等式的解为: x”;a/bELSEPRINT “不等式的解为: ”;a/bEND IFEND2. 条件语句的一般格式(1)IFTHEN LESE 形式IF 条件 THEN语句 1ELSE语句 2END IF说明:当计算机执行上述语句时,首先对 IF 后的条件进行判断,如果条件符合,就执行 THEN 后的语句,否则执行 ELSE 后的语句.书写时一个条件语句中的 IF 与 END IF 要对齐.(2)IFTHEN 形式IF 条件 THEN语句语句1满足条件?是否语句2语句满足条件?是否教学
22、资料END IF说明:当计算机执行上述语句时,首先对 IF 后的条件进行判断,如果条件符合,就执行 THEN 后的语句,否则直接结束该条件语句.三、知识应用练习 1:已知函数 )(xf 编写一个程序,对每输入的一个x值,都得到相应的函数值.例 1:(课本第 25 页例 6)编写程序,输入一元二次方程 02cbxa的系数,输出它的实数根.分析:首先画出程序框图,再转化为程序语句;解释平方根与绝对值 BASIC 语言的表示;注意两重条件的表示方法.例 2:(课本第 27 页例 7)编写程序,使得任意输入的 3 个整数按从大小的顺序输出.分析:首先画出程序框图,再转化为程序语句.四、课堂练习1. (
23、课本第 29 页练习 1) 2. (课本第 29 页练习 2) 3. (课本第 29 页练习 3) (要求:先画出程序框图)4. (课本第 29 页练习 4) (要求:先画出程序框图)5. 6.五、课堂小结1.理解条件语句的两种表达形式以及何时用格式 1、何时用格式 2.2.注意多个条件的语句表达方法:如(a+bc) AND (b+ca) AND (a+cb).3.条件语句的嵌套,注意 END IF 是和最接近的匹配,要一层套一层,不能交叉 .3.编写一个程序的步骤:首先用自然语言描述问题的一个算法,然后把自然语言转化为程序框图,最后把程序框图转化为程序语句.六、作业1.(课本第 23 页习题
24、 1.2A 组第 3 题)2.(课本第 24 页习题 1.2B 组第 2 题)3. 某市电信部门规定:拨打市内电话时,如果通话时间不超过 3 分钟,则收取通话费0.2 元;如果通话 超过 3 分钟,则超过部分以 0.1 元/分钟收取通话费.问:设计一个计算12 ( )( x)教学资料通话费用的算法,并且画出程序框图以及编出程序.4. 编写一个程序,任意输入一个整数,判断它是否是 5 的倍数.5. 基本工资大于或等于 600 元,增加工资 10%;若小于 600 元大于等于 400 元,则增加工资 15%;若小于 400 元,则增加工资 20%. 请编一个程序,根据用户输入的基本工资,计算出增加
25、后的工资.1.2 基本算法语句(共 3 课时) (有条件在电脑室上)1.2.3 循环语句(第 3 课时)【课程标准】经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想【教学目标】1.理解、掌握循环语句;2.能运用循环语句表达解决具体问题的过程;3.培养学生逻辑思维能力与表达能力,进一步体会算法思想.【教学重点】循环语句的表示方法、结构和用法【教学难点】将具体问题的程序框图转化为程序语句的过程,当型循环和直到型循环的格式与逻辑的区别与联系.【教学过程】一、回顾知识1. 什么是循环结构?画出其程序框图.2.
26、引例:(课本第 13 页例 6)设计一个计算 1+2+100 的值的算法,并画出程序框图.分析:由程序框图转化为程序语句,引入循环语句.二、循环语句 1. 当型(WHILE 型)语句的一般格式:WHILE 条件 循环体WEND说明:当计算机遇到 WHILE 语句时,先判断条件的真假,如果条件符合,就执行WHILE 与 WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到 WEND 语句后,接着执行 WEND 之后的语句.因此,当型循环有时也称为 “前测试型”循环.满足条件?否循环体是满足条件
27、?是否循环体教学资料2. 直到型(UNTIL 型)语句的一般格式:DO循环体LOOP UNTIL 条件说明:当计算机遇到 UNTIL 语句时,先执行 DO 和 LOOP UNTIL 之间的循环体,然后判断条件是否成立,如果不成立,执行循环体.这个过程反复执行,直到某一次符合条件为止,这时不再执行循环体,跳出循环体执行 LOOP UNTIL 后面的语句. 因此,直到型循环有时也称为“后测试型”循环.3.当型循环与直到型循环的区别:当型循环先判断后执行,直到型循环先执行后判断.当型循环用 WHILE 语句,直到型循环用 UNTIL 语句.对同一算法来说,当型循环和直到循环的条件互为反条件.三、知识
28、应用练习 1:编写程序,计算函数 53)(2xf当 20,3,1时的函数值.例 1:设计一个算法,求 513n 的和(其中 n的值由键盘输入) ,画出程序框图并编程.例 2:把课本第 7 页的程序框图转化为程序语句.练习 2:(课本第 32 页练习 1)练习 3:(课本第 32 页练习 2)练习 4:某玩具厂 2004 年的生产总值为 200 万元,如果年生产增长率为 5%,试编一个程序,计算最早在哪一年生产总值超过 300 万元.练习 5: 练习 6:算法初步复习课(1 课时)【教学目标】1.回顾算法的概念以及三种基本逻辑结构;2.掌握三种基本逻辑结构的应用;3.掌握条件结构与循环结构互相嵌
29、套的应用.【教学重点】三种基本逻辑结构的应用教学资料【教学难点】条件结构与循环结构互相嵌套的应用【教学过程】一、算法的基本概念1. 算法定义描述:在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特性:有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.输入:一个算法中有零个或多
30、个输入输出:一个算法中有一个或多个输出.3P例 1:任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n是否为质数做出判定.解:算法如下:第一步:判断 n是否等于 2. 若 2,则 是质数;若 2,则执行第二步.第二步:依次从 2( 1)检验是不是 n的因数,即整除 n的数.若有这样的数,则 n不是质数;若没有这样的数,则 是质数.二、三种基本逻辑结构1. 顺序结构顺序结构是由若干个依次执行的处理步骤组成.输入语句:INPUT “提示内容 ”;变量输出语句:PRINT “提示内容” ;表达式赋值语句:变量=表达式15P 例 4:交换两个变量 A 和 B 的值,并输出交换前后的值.输入输
31、出语句教学资料解:算法如下: 程序框图:第一步:输入 A,B 的值.第二步:把 A 的值赋给 x.第三步:把 B 的值赋给 A.第四步:把 x 的值赋给 B.第五步:输出 A,B 的值.程序如下:INPUT “A=,B=” ;A,Bx=AA=BB=xPRINT A,BEND2. 条件结构根据条件判断,决定不同流向.(1)IFTHEN LESE 形式IF 条件 THEN语句 1LESE语句 2END IF(2)IFTHEN 形式IF 条件 THEN语句END IF19P例 6:编写程序,使得任意输入的 3 个整数按大到小的顺序输出.3. 循环结构从某处开始,按照一定条件,反复执行某一处理步骤.(
32、1)当型(WHILE 型)循环:输入A,B输出A,B开始结束A=Bx=AB=x语句1满足条件?是否语句2满足条件?否循环体是语句满足条件?是否教学资料WHILE 条件 循环体WEND(2)直到型(UNTIL 型)循环:DO循环体LOOP UNTIL 条件9P 例 5:设计一个计算 1+2+100 的值的算法,并画出程序框图三、基本方法1. 编写一个程序的三个步骤:第一步:算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法;第二步:画出程序框图:依据算法分析,画出对应的程序框图;第三步:写出程序:耕具程序框图中的算法步骤,逐步把算法用相应的程序语句表达出来. 15P例 4:
33、交换两个变量 A 和 B 的值,并输出交换前后的值.2. 何时应用条件结构?当问题设计到一些判断,进行分类或分情况,或者比较大小时,应用条件结构;分成三种类型以上(包括三种)时,由边界开始逐一分类,应用多重条件结构.注意条件的边界值.如:(题目条件有明显的提示)(1)编写一个程序,任意输入一个整数,判断它是否是 5 的倍数.(2)编写求一个数是偶数还是奇数的程序,从键盘上输入一个整数,输出该数的奇偶性.(3)编写一个程序,输入两个整数 a,b,判断 a 是否能被 b 整除.(4)某市电信部门规定:拨打市内电话时,如果通话时间不超过 3 分钟,则收取通话费 0.2 元;如果通话 超过 3 分钟,
34、则超过部分以 0.1 元/分钟收取通话费.问:设计一满足条件?是否循环体教学资料个计算通话费用的算法,并且画出程序框图以及编出程序.(5)基本工资大雨或等于 600 元,增加工资 10%;若小于 600 元大于等于 400 元,则增加工资 15%;若小于 400 元,则增加工资 20%. 请编一个程序,根据用户输入的基本工资,计算出增加后的工资.(6)闰年是指年份能被 4 整除但不能被 100 整除,或者能被 400 整除的年份.如:(题目隐藏着需要判断、分类或比较大小的过程等)(7) (课本第 11 页例 5)编写程序,输入一元二次方程 02cbxa的系数,输出它的实数根.(8) (课本第
35、27 页例 7)编写程序,使得任意输入的 3 个整数按从大到小的顺序输出.3. 何时应用循环结构?当反复执行某一步骤或过程时,应用循环结构.当型循环是先判断条件,条件满足十执行循环体,不满足退出循环;直到型循环是先执行循环体,再判断条件,不满足条件时执行循环体,满足时退出循环.当循环体涉及到条件是否有意义时,只能用当型循环(如图 1) ;当条件用到循环体初始值时,只能用直到型循环(如图 2).应用循环结构前:确定循环变量和初始条件;确定算法中反复执行的部分,即循环体;确定循环的终止条件.如:(题目条件有明显的提示)1i是否2s205s0i否 是1iip教学资料(1)设计一个计算 1+2+100
36、 的值的算法,并画出程序框图.(2)设计一个算法,计算函数 53)(2xf当 20,3,1时的函数值,并画出程序框图.(3)如果我国工农业产值每年以 9%的增长率增长,问几年后我国产值翻一翻,试用程序框图描述其算法.(4)设计一个算法,输出 1000 以内(包括 1000)能被 3 和 5 整除的所有正整数,并画出算法的程序框图以及编程.(5)全班一共 40 个学生,设计算法流程图,统计班上数学成绩优秀(100 分数85)的学生人数,计算出全班同学的平均分.如:(题目隐藏着需要反复执行的过程等)(6)任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n是否为质数做出判定.(7)画出用二
37、分法求方程 02x的近似根(精确度为 0.005)的程序框图,并写出程序.四、几个难点1.条件结构中嵌套着条件结构(1)编写一个程序,对于函数 )(xf 输入 x的值,输出相应的函数值.(2)基本工资大于或等于 600 元,增加工资 10%;若小于 600 元大于等于 400 元,则增加工资 15%;若小于 400 元,则增加工资 20%. 请编一个程序,根据用户输入的基本工资,计算出增加后的工资.2. 循环结构中嵌套着条件结构(1)任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n是否为质数做出判定.(2)全班一共 40 个学生,设计算法流程图,统计班上数学成绩优秀(100 分数8
38、5)的学生人数,计算出全班同学的平均分.(3)画出用二分法求方程 02x的近似根(精确度为 0.005)的程序框图,并写出程序.3. 条件结构中嵌套着循环结构(1)任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n是否为质数做出判定.4. 循环结构中嵌套着循环结构( 1x)2( 0)3)(教学资料(1)编写一个程序,求 T= 1!+2!+3!+20!的值.五、知识应用1.一城市在法定工作时间内,每小时的工资为 8 元,加班工资每小时 10 元,一人一周内工作 60 小时,其中加班 20 小时,税金是 10%,写出这个人净得的工资数的一个算法,并画出程序框图.2. 已知函数 )(xf
39、编写一个程序,对每输入的一个 x值,都得到相应的函数值.3. 2000 年我国人口为 13 亿,如果人口每年的自然增长率为 7%,那么多少年后我国人口将达到 15 亿?请设计一个算法,画出程序框图,并写出程序.4. 某超市为里促销,规定:一次性购物 50 元以下(含 50 元)的,按原价付款;超过50 元但在 100 元以下(含 100 元)的,超过部分按九折付款;超过 100 元的,超过部分按八折付款.设计一个算法程序框图,完成超市的自动计费的工作,要求输入消费金额,输出应付款.并编写程序.5. 编写一个程序,任意输入两个正整数 m,n,输出它们所有的公因数.6. 设计算法的程序框图,输出
40、2005 以内除以 3 余 1 的正整数,并写出程序.12 ( )( x)教学资料7. 设计算法的程序框图,求方程 0143x在区间 2,内的解.(精确到0.0005)第二章课题:课题: 2.0 随机抽样随机抽样一教学任务分析:(1)通过对具体实例的分析,使学生了解学习统计的意义,能够通过具体实例从实际问题中提出统计问题.理解随机抽样的必要性和重要性.(2 通过对著名案例的分析,理解样本的代表性与统计推断结论的可靠性之间的关系.二教学重点与难点:教学重点:使学生初步学会从实际问题中提出统计问题, 理解随机抽样的必要性和重要性,以及样本代表性与统计推断结论的可靠性之间的关系.教学难点:对什么是“
41、有一定价值的统计问题”的理解.三教学基本流程:阅读章节引言,了解本章学习的内容通过具体实例引导学生应用统计的思想看问题,对具体问题提出统计问题了解样本估计总体的必要性,样本代表性与统计推断结论的可靠性之间的关系巩固练习,小结、作业四.教学情境设计: 1创设情景,揭示课题介绍章头图,了解“本章学习的内容是什么”2从统计的角度看问题问题 1:如何刻画一批袋装牛奶的质量是否合格?(引导学生思考,交流,讨论,教师总结)刻画一批袋装牛奶的质量是否合格?可以用下面的变量作为衡量产品质量的指标:(1)袋装牛奶的细菌含量;(2)袋装牛奶的重量;(3)袋装牛奶的蛋白质含量;(4)袋装牛奶的脂肪含量;教学资料(5
42、)袋装牛奶的钙含量;问题 2:“一批袋装牛奶的细菌含量是否超标”这一问题中蕴涵的总体是什么?(个体是一袋袋装牛奶,总体是这批袋装牛奶)问题 3:“一批袋装牛奶的细菌含量是否超标”这一问题是通过什么变量来表达的?(袋装牛奶的细菌含量)类似于“一批袋装牛奶的细菌含量是否超标”这样的问题称为统计问题.3.统计问题的特点为了检验一批袋装牛奶的质量是否合格,我们从细菌含量的角度提出了统计问题:“一批袋装牛奶的细菌含量是否超标”?你认为统计问题有什么特点?(1)明确的总体如上述问题中的“一批袋装牛奶” ;(2)问题由所要研究的变量构成。如上述问题中研究的变量是“袋装牛奶的细菌含量”.问题 4:在检验一批袋
43、装牛奶的质量是否合格的问题中,你能够用其他的变量提出统计问题吗?(袋装牛奶的重量是否达标;袋装牛奶的蛋白质含量是否达标;袋装牛奶的脂肪含量是否达标;袋装牛奶的钙含量是否超标;袋装牛奶的重量,蛋白质含量,脂肪含量,钙含量是否都达标等)4.抽样的意义问题 5:通过普查和抽样调查来了解“一批袋装牛奶的细菌含量”各有什么优缺点?应该采用哪种方法?普查的优点:在不出错的情况下,可以得到这批袋装牛奶的细菌含量的真实数据。弊病:(1)需要打开每一袋牛奶进行检验,结果使得这批牛奶不能够出售,失去了调查这批袋装牛奶的质量的意义。(2)普查需要大量的人力,物力和财力。(3)当普查的过程中出现数据测量,录入等错误时
44、,也会产生错误的结论。抽样调查的优点:容易操作,节省人力,物力和财力。缺点:估计结论有误差。所以,一般采用抽样调查来了解产品质量指标。问题 6:为什么说一个好的抽样调查胜过一次蹩脚的普查?你能举出用样本估计总体的例子吗?引导学生应用前面的实例说明。教学资料问题 7:要对一批袋装牛奶的细菌含量作出正确判断,对样本的要求是什么?样本数据能够很好的代表总体数据,即样本应该具有很好的代表性。问题 8:“做一锅汤,放完所有的调料后,要品尝汤的味道” ,你如何通过一小勺汤来正确判断 一锅汤的味道?先搅拌均匀,然后取一小勺汤品尝。汤中的所有原料相当于总体,这里关心的是“平均味道” (味道相当于变量,统计问题
45、关心的是变量的平均数) ,每个个体具有特定原料的味道(相当个体变量值) ,小勺中的原料相当于取出的样本,搅拌均匀的目的是要保证样本中具有的各种味道的原料之比与总体中的这种比基本相同。即样本和总体含有基本相同的信息。问题 9:阅读“一个著名的案例” (P 57) ,你认为预测结果出错的原因是什么?用于统计推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民的观点。 样本不具有很好的代表性。5小结:(1)如何提出统计问题?(2)抽样调查和普查各有什么优缺点?(3)样本的代表性和统计推断结论之间的关系是什么?6.课后作业:作业本相应习题教学资料课题:2.1 简单随机抽样一教学任务分析:(1)
46、以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(2 正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本.(3)通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法.二教学重点与难点:教学重点:简单随机抽样的概念,抽签法及随机数法的操作步骤.教学难点:对样本随机性的理解.三教学基本流程:以探究具体问题为导向,引入简单随机抽样的概念抽签法随机数法巩固练习,小结、作业四.教学情境设计: 1创设情景,揭示课题问题
47、1:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?教师引导学生交流讨论,提出检验的方法:(1) 采用普查方法如何?(2) 采用抽查方法如何?你如何获取有代表性的样本.问题 2:假设你作为一名食品卫生工作人员,要对某食品店内的大包装箱内的小包装饼干进行卫生达标检验,你准备怎样做?教学资料显然,你只能从中抽取一定数量的小包装饼干作为检验的样本.那么,应当怎样获取样本呢?2简单随机抽样的概念一般地,设一个总体含有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机
48、抽样(simpie random sampling).这样抽取的样本,叫做简单随机样本.思考 1:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取 50 个个体作为样本.(2)箱子里共有 100 个零件,从中选出 10 个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.思考 2:概括简单随机抽样的特点(1)简单随机抽样要求被抽取的样本的总体个数 N 是有限的.(2)简单随机样本数 n 小于等于样本总体的个数 N.(3)简单随机样本是从总体中逐个抽取的.(4)简单随机抽样是一种不放回的抽样.(5)简单随机抽样的每个个体入样的可能性均为 n/N.3抽签法(1)把总体中的所有 N 个个体编号(从 0N-1);(2)准备 N 个号签把号码分别写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,不放回地连续抽取 n 次;(3)将取出的 n 个号签上的号码所对应的 n 个个体作为样本.即:抽签法就是把总体中的 N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取 n 次,就得到一个容量为 n 的样本.抽签法的操作步骤概括为:个体编号,搅拌均匀,逐个抽取.思考 3:你