1、简单复合函数 的导数,基本求导公式:,知识回顾:,根据导数的概念,求函数导数的过程可以用下面的流程图来表示,法则1: 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:,法则2:,法则3:两个函数的积的导数,等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数,法则4 :两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即:,复合函数:,由几个函数复合而成的函数,叫复合函数由函数 与 复合而成的函数一般形式是 ,其中u称为中间变量,目前我们所研究的简单复合函数的导数,仅限于形如f(ax+b)的复合函数,求函数 的导数 。,
2、方法一:,问题探究:,方法二:,看作是函数 和函数,复合函数,并分别求对应变量的导数如下:,两个导数相乘,得,从而有,将函数,;,问题探究:,考察函数 的导数 。,另一方面:,复合函数,并分别求对应变量的导数如下:,两个导数相乘,得,从而有,看作是函数 和函数,将函数,分解,求导,相乘,回代,建构数学,对于一般的复合函数,结论也成立 。 复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 ,即,一般地,我们有u=ax+b时,有,若 y=f(u),u=ax+b,则,复合函数求导的基本步骤是:,(1)分解(2)求导(3)相乘(4)回代,数学运用,例1 试说明下列函数是怎样复合而成的,并求下列函数的导数:,数学运用,练习:试说明下列函数是怎样复合而成的, 并求下列函数的导数:,例2 写出由下列函数复合而成的函数,并 求它们的导数。 ,,,; ,,, 解:,例3 求y=(2x+1)5在x=1处的切线方程。,1、求下列函数的导数:,课堂练习:,2、求曲线y=sin2x在点P(,0)处的切线方程。,小结 :复合函数的求导,要注意分析复合函数的结构,引入中间变量,将复合函数分解成为较简单的函数,然后再用复合函数的求导法则求导;复合函数求导的基本步骤是:分解求导相乘回代,