1、长方形和正方形的面积计算教学目标:1. 知识目标:经历长方形和正方形面积计算公式的推导过程,理解并掌握这两个面积计算公式,能运用公式进行长方形和正方形的面积计算,并能用来解决简单的实际问题。2. 能力目标:在学习活动中发展观察能力、操作能力、空间想象能力和抽象概括能力,培养符号感。3. 情感目标:进一步激发探索数学问题的兴趣和欲望,进一步培养合作意识和合作能力。教具准备:每人准备 12 个边长 1 厘米的正方形硬纸片,1 张电话卡或其他类似的卡片。教学过程:一、导入新课1. 出示两组长方形,第一组等宽不等长,第二组等长不等宽。2. 问:每组中两个长方形哪个面积比较大,你是怎么看出来的?3. 谈
2、话:通过我们对两组长方形的观察,发现长相等的两个长方形,宽比较大的面积比较大;宽相等的两个长方形,长比较大的面积比较大,这说明了长方形的面积与它的长和宽有关系。那么有什么关系呢?这节课我们就来研究长方形的面积计算,同时也研究正方形的面积计算。二、教学新课1. 教学例 1谈话:请同学们拿出自己准备好的边长是 1 厘米的正方形卡片,四人小组合作摆出 3 个不同的长方形。然后一起看一看摆成的每个长方形的长是多少厘米,宽是多少厘米,用了多少个 1 平方厘米的正方形,面积是多少,再分别填写在P44 的表格里。学生小组合作摆长方形,互相交流,各自填表。展示部分小组填写的表格。问:每个长方形中正方形卡片的个
3、数你们是数出来的,还是算出来的,说给大家听听。表中长方形的面积的平方厘米数与所用卡片的个数有什么关系?归纳长方形的面积计算公式。谈话:通过刚才的一系列操作活动,你们是不是发现了长方形的面积与它的长和宽的关系。怎样计算长方形的面积?在小组内讨论。根据回答板书:长方形的面积长宽讲述:这就是长方形的面积计算公式。为了更简明,我们还可以用字母表示这个公式,Sab。在这个公式里,S 表示什么?a 表示什么?b 呢?2. 练习:1)有一个长方形的窗帘布,长 5 米,宽 3 米,它的面积是多少平方米?3 米5 米2)如果这个窗帘的长减少 1 米,宽不变,现在这个窗帘的面积是多少平方米?3 米1 米3)如果窗
4、帘的长继续减少 1 米,宽不变,这时窗帘的面积又变成多少平方米?3 米1 米 1 米正方形的面积=边长边长 S = a a 4)有一块边长 4 分米的正方形玻璃,它的面积是多少?三、巩固练习(一)判断:1. 学生课桌面长 10 分米,宽 4 分米,面积是 40 平方分米。 ( )2. 黑板长 3 米,宽 1 米,面积是 4 米。 ( )3. 一张正方形邮票边长 3 厘米,面积 是 9 平方厘米。 ( )4. 科技楼的占地面积是一个边长 100 米的正方形,它的面积是 400 平方米。 ( )(二)量出数学书封面的长和宽(取整厘米数) ,计算一下数学书封面的面积。(三)学校在开展绿化、美化校园活动中,在操场西边修了一个边长是 5 米的正方形花坛,请你帮忙算算花坛的面积是多少?(四)一张长方形纸长 19 厘米,宽 13 厘米,面积是多少?怎样折出一个最大的正方形?折成的这个最大的正方形面积是多少平方厘米?折去部分的面积是多少平方厘米?四、全课总结问:这节课你学习了哪些知识?有什么收获?还有什么不明白的地方?谈话:长方形和正方形的面积计算在日常生活中广泛应用。例如,油漆我们的黑板就要先算出黑板的面积,为做教室门准备材料,就要计算教室门的面积。你能估计一下我们教室的黑板和教室门正面的面积吗?回到家里可以找一些表面是长方形或正方形的物体,测量并计算出面积。