1、九年级数学(上)第二章 一元二次方程,4.分解因式法(1) 一元二次方程解法,配方法,我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法(solving by completing the square),平方根的意义:,完全平方式:式子a22ab+b2叫完全平方式,且a22ab+b2 =(ab)2.,如果x2=a,那么x=,用配方法解一元二次方程的方法的助手:,配方法,用配方法解一元二次方程的步骤:,1.化1:把二次项系数化为1(方程两边都除以二次项系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变
2、形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.,公式法,一般地,对于一元二次方程 ax2+bx+c=0(a0),上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法(solving by formular).,老师提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a0). 2.b2-4ac0.,你能解决这个问题吗,一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?,小颖,小明,小亮都设这个数为x,根
3、据题意得,小颖做得对吗?,小明做得对吗?,你能解决这个问题吗,一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?,小颖,小明,小亮都设这个数为x,根据题意得,小亮做得对吗?,分解因式法,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法你为分解因式法.,老师提示: 1.用分解因式法的条件是:方程左边易于分解,而右边等于零; 2. 关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”,分解因式法,用分解因式法解方程: (1)5x2=4x;
4、(2)x-2=x(x-2).,分解因式法解一元二次方程的步骤是:,2. 将方程左边因式分解;,3. 根据“至少有一个因式为零”,转化为两个一元一次方程.,4. 分别解两个一元一次方程,它们的根就是原方程的根.,1.化方程为一般形式;,1 .x2-4=0; 2.(x+1)2-25=0.,解:1.(x+2)(x-2)=0,x+2=0,或x-2=0.,x1=-2, x2=2.,淘金者,你能用分解因式法解下列方程吗?,2.(x+1)+5(x+1)-5=0,x+6=0,或x-4=0.,x1=-6, x2=4.,这种解法是不是解这两个方程的最好方法? 你是否还有其它方法来解?,争先赛,1.解下列方程:,解
5、:设这个数为x,根据题意,得,x=0,或2x-7=0.,2x2=7x.,2x2-7x=0,x(2x-7) =0,先胜为快,一个数平方的2倍等于这个数的7倍,求这个数.,我最棒 ,用分解因式法解下列方程,参考答案:,1. ;,2. ;,4. ;,我们已经学过一些特殊的二次三项式的分解因式,如:,二次三项式 ax2+bx+c 的因式分解,但对于一般的二次三项式ax2+bx+c(ao),怎么把它分解因式呢?,观察下列各式,也许你能发现些什么,一般地,要在实数范围 内分解二次三项式ax2+bx+c(ao),只要用公式法求出相应的一元二次方程ax2+bx+c=0(ao),的两个根x1,x2,然后直接将a
6、x2+bx+c写成a(x-x1)(x-x2),就可以了.即ax2+bx+c= a(x-x1)(x-x2).,二次三项式 ax2+bx+c 的因式分解,回味无穷,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法. 分解因式法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.” 因式分解法解一元二次方程的步骤是: (1)化方程为一般形式; (2)将方程左边因式分解;(3)根据“至少有一个因式为零”,得到两个一元一次方程.(4)两个一元一次方程的根就是原方程的根. 因式分解的方法,突出了转化的思想方法“降次”,鲜明地显示了“二次”转化为“一次”的过程.,知识的升华,1、P62习题2.7 1,2题;祝你成功!,解下列方程,参考答案:,结束寄语,配方法和公式法是解一元二次方程重要方法,要作为一种基本技能来掌握.而某些方程可以用分解因式法简便快捷地求解,. 一元二次方程也是刻画现实世界的有效数学模型.,