1、第11讲一次函数的图象与性质,第11讲 一次函数的图象与性质,第11讲 考点聚焦,考点1 一次函数与正比例函数的概念,第11讲 考点聚焦,考点2 一次函数的图象和性质,(1)正比例函数与一次函数的图象,一条直线,第11讲 考点聚焦,(2)正比例函数与一次函数的性质,一、三象限,二、四象限,第11讲 考点聚焦,一、二、三象限,一、三、四象限,一、二、四象限,二、三、四象限,考点3 两条直线的位置关系,第11讲 考点聚焦,k1k2,k1k2,b1b2,考点4 两直线的交点坐标及一次函数的图象与坐标轴围成的三角形的面积,第11讲 考点聚焦,考点5 由待定系数法求一次函数的解析式,第11讲 考点聚焦,
2、因在一次函数ykxb(k0)中有两个未知系数k和b,所以,要确定其关系式,一般需要两个条件,常见的是已知两点P1(a1,b1),P2(a2,b2),将其坐标代入 得 求出k,b的值即可,这种方法叫做_,待定系数法,考点6 一次函数与一次方程(组)、一元一次不等式(组),第11讲 考点聚焦,第11讲 归类示例, 类型之一 一次函数的图象与性质,命题角度: 1一次函数的概念; 2一次函数的图象与性质,例1 2012山西 如图111,一次函数y(m1)x3的图象分别与x轴、y轴的负半轴相交于点A、B,则m的取值范围是( ) Am1 Bm0,图111,B,第11讲 归类示例,解析 根据函数的图象可知m
3、10,求出m的取值范围为m1.故选B.,第11讲 归类示例,k和b的符号作用:k的符号决定函数的增减性,k0时,y随x的增大而增大,k0时,y随x的增大而减小;b的符号决定图象与y轴交点在原点上方还是下方(上正,下负), 类型之二 一次函数的图象的平移,命题角度: 1一次函数的图象的平移规律; 2求一次函数的图象平移后对应的解析式,第11讲 归类示例,例2 2012衡阳 如图112,一次函数ykxb的图象与正比例函数y2x的图象平行且经过点A(1,2),则kb_.,图112,8,第11讲 归类示例,解析 ykxb的图象与正比例函数y2x的图象平行,两平行直线的解析式的k值相等,k2. ykxb
4、的图象经过点A(1,2),2b2, 解得b4,kb2(4)8.,第11讲 归类示例,直线ykxb(k0)在平移过程中k值不变平移的规律是若上下平移,则直接在常数b后加上或减去平移的单位数;若向左(或向右)平移m个单位,则直线ykxb(k0)变为yk(xm)b(或k(xm)b),其口诀是上加下减,左加右减, 类型之三 求一次函数的解析式,例3 2012湘潭 已知一次函数ykxb(k0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式,第11讲 归类示例,命题角度: 由待定系数法求一次函数的解析式,第11讲 归类示例,待定系数法求函数解析式,一般是先写出一次函数的一般式y
5、kxb(k0),然后将自变量与对应的函数值代入函数的解析式中,得出关于待定系数的方程或方程组,解这个方程(组),从而写出函数的解析式, 类型之四 一次函数与一次方程(组),一元一次不等式(组),例4 2012湖州 一次函数ykxb(k、b为常数,且k0)的图象如图113所示根据图象信息可求得关于x的方程kxb0的解为_,第11讲 归类示例,命题角度: 1利用函数图象求二元一次方程组的解; 2利用函数图象解一元一次不等式(组),x1,图113,第11讲 归类示例,第11讲 归类示例,(1)两直线的交点坐标是两直线所对应的二元一次方程组的解(2)根据在两条直线的交点的左右两侧,图象在上方或下方来确
6、定不等式的解集,第11讲 回归教材,待定系数法求“已知两点的一次函数的解析式” 教材母题 人教版八上P120T8 一个函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,3a)与点(a,6),求这个函数的解析式,第11讲 回归教材,点析 仔细审题,清楚题目条件:一个函数,其图象是直线且过原点和第四象限,逐渐缩小函数类型,确定函数为正比例函数在解出a、k的对应值后,再验证是否满足条件,作出完全符合题目要求的结论如果没有限制条件“这条直线过第四象限”,则结论有两解,第11讲 回归教材,中考变式,图114,2012聊城 如图114,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2) (1)求直线AB的解析式; (2)若直线AB上的点C在第一象限,且SBOC2,求点C的坐标,第11讲 回归教材,