1、统计过程控制(SPC) 第一节 统计过程控制的基本知识 一、SPC(Statistical Process Control)的基本概念统计过程控制,是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。 主要工具:控制图,二、统计过程控制的发展SPC:统计过程控制;SPD:统计过程诊断;SPA:统计过程调整。三者间的关系:,第二节 常规控制图(休哈特控制图)原理一、常规控制图的构造控制图是对过程质量特性值进行测定、记录、评估和监察过程是否处于统计控制状态的一种用统计方法设计的图。,图2-1 控制图示
2、例,二、SPC的理论基础产品的统计观点产品质量的统计观点是现代质量管理的基本观点之一。(一) 产品的质量具有变异性(二) 产品质量的变异具有统计规律性,图2-3 二项分布(图中P为不合格品率),图2-4 泊松分布(图中为平均不合格数),图2-5 正态分布,三、控制图的形成及控制图原理的几种解释(一) 正态分布的基础知识(1)数据越多,分组越密。直方图也越接近一条光滑曲线。最常见的分布为正态。,图2-5 直方图趋近光滑曲线,(2)正态分布是一条曲线,采用两个参数:平均值与标准差表示。图2-6 正态曲线随着平均值变化,图2-7 正态曲线随着标准差变化,不论与取值为何,产品质量特性值落在-3,+3范
3、围内的概率为99.73%。 图2-8 正态分布曲线下的面积,+3,-3,(3)常规控制图的形成,(二)控制图原理的第一种解释 点出界就判异 小概率事件原理:小概率事件在一次试验中几乎不可能发生,若发生即判断异常。,(三) 控制图原理的第二种解释 1.概念偶然因素(偶因random cause):也称随机因素(stochastic cause),是过程固有的,始终存在,对质量的影响微小,但难以除去。 异常因素(异因,可查明因素assignable cause,或系统因素systematic cause):非过程固有,有时存在,有时不存在,对质量影响大,但不难除去。 偶然波动:偶因引起质量的波动
4、,简称偶波; 异常波动:异因引起质量的 波动,简称异波。,2.控制图的第二种解释 假定现在异波均已消除,只剩下偶波,则此偶波的波动将是最小波动,即正常波动。根据这正常波动,应用统计学原理设计出控制图相应的控制界限,当异常波动发生时,点子就会落在界外。因此点子频频出界就表明异波存在。 控制图上的控制界限就是区分偶波与异波的科学界限。,四、控制图的作用 及时告警 20字方针“查出异因,采取措施,加以消除,不再出现,纳入标准”,图2-11 控制图点子形成倾向,图2-13 达到统计控制状态的循环,五、统计控制状态(1) 统计控制状态(state in statistical control),也称稳态
5、(stable state),即过程中只有偶因而无异因产生的变异的状态。在统计控制状态下,有下列好处:对产品的质量有完全的把握(合格率)生产也是最经济的 (不合格率)在统计控制状态下,过程的变异最小。,(2) SPC(统计过程控制)以统计控制状态(稳态)作为基准的。 (3) SPC所以能够保证实现全过程的预防,依靠的就是全稳生产线。,六、控制图的两种错误 从数理统计的观点,存在可能的两能错误:(1) 第一种错误(type I error):虚发警报(false alarm)。(2)第二种错误(type II error):漏发警报(alarm missing)。,图2-13 控制图的两种错误,
6、(3)如何减少两种错误所造成的损失?控制图共有三根线,一般,正态分布的CL居中不动,而且UCL与LCL互相平行,故只能改动UCL与LCL二者之间的间隔距离。 解决方法是:根据两种错误所造成的总损失最小来确定最优间距,经验证明休哈特所提出的3方式较好。 注:80年代,出现了经济质量控制EQC学派(学术带头人:德国乌尔茨堡大学冯考拉尼教授)以使两种错误所造成的总损失最小为出发点来设计控制图与抽样方案。,七、3方式 3方式的公式:UCL=+3CL=LCL=-3 式中、为统计量的总体参数。 加以应用时需要经过下列两个步骤: (1)具体化。 (2)对总体参数进行估计。,第二节 分析用控制图的含义 一、分
7、析用控制图与控制用控制图 一道工序开始应用控制图时,总要将非稳态的过程调整到稳态的过程,此乃分析用控制图的阶段。 等到过程调整到稳态后,才能延长控制图的控制线作为控制用控制图,所谓控制用控制图的阶段。,据使用的目的不同,控制图分为:分析用与控制用控制图。 (一)分析用控制图 主要分析以下两点: (1)所分析的过程是否为统计稳态?(参见下页图) (2)其过程能力指数是否满足要求?,统计稳态与技术稳态分类表,在控制状态下(异因消除,只有偶因),时间,大小,时间,在控制状态下,但工程能力不足 (偶因的变异太大),(偶因的变异减少),上公差限,下公差限,稳态的图示,过程能力的图示,(二)控制用控制图
8、当过程达到了我们所确定的状态后,才能将分析用控制图的控制线延长作为控制用控制图,应有正式交接手续。 判异准则 判稳准则 进入日常管理后,关键是保持所确定的状态。, 经过一个阶段的使用后,可能又出现异常,这时按“20字方针”去做,恢复所确定的状态。 从数学的角度看 分析用控制图的阶段就是过程参数未知的阶段; 控制用控制图的阶段则是过程参数已知的阶段。,二、休哈特控制图的设计思想 1. 设计思想是先定,再看 按照3方式确定UCL和LCL,也即确定=0.27% 一般取1%、5%、10% 尽量将取得小,但势必会增大。,使用者信心 升 = 0.27% 升 点出界就判异 增大时,追加准则,即界内点排列不随
9、机判异 2. 80年代起出现经济质量控制 (EQC)学派 思想:从两种错误造成的总损失最小出发来设计控制图与抽样方案。,三、判稳准则的分析 (一)判稳准则的思路 打一个点未出界有两种可能性: 过程本来稳定 漏报 (这里由于小,所以大),故打一个点子未出界不能立即判稳。,(二)判稳准则 在点子随机排列的情况下,符合下列各点之一判稳: 连续25个点,界外点数d=0; 连续35个点,界外点数d0; 连续100个点,界外点数d2。,四、判异准则的分析 点出界就判异; 界内点排列不随机判异。,判 异 准 则,准则1: 一个点在A区之外,准则2:连续 9个点在中心线同一侧,准则3:连续6个点递增或递减,准
10、则4:连续14个点上下交替,返回目录,判 异 准 则(续1),准则5:连续3点中有2点在同侧B区以外,准则6:连续5点中有4点在同侧C区以外,准则7:连续15个点在C区内,准则8:连续8个点都不在C区内,返回目录,第三节 过程能力与过程能力指数,一、过程能力指数Cp (一)双侧规范情况的过程能力指数T: 技术公差幅度,TU,TL分别为上,下规范界限: 质量特性分布的总体标准差 可用 来估计,可用下面值估计:平均样本标准差, :平均样本极差c4,d2可查表.,过程能力指数Cp值的评价参考,【例】设有某工序的上公差TU为0.2190,下公差TL为0.1250,现场抽查的数据如下表,其图如下图1。由
11、图1可见,工序失控,经过执行20字方针后,重新做图得到休整后的图2。由图2可见,工序已经达到稳态。故现在可对过程能力进行评价。,Cp 计 算 数 据,图1,图2,解:于是,过程能力指数为:过程能力不够充分,从图2发现分布中心=0.1968与规范中心M=(TU+TL)/2=0.1720有偏离,应进行调整。调整后,Cp值会有所提高。,(二)单侧规范情况的过程能力指数 1. 只有上限要求,而对下限没有要求:只适用于的范围: 2. 只有下限要求,而对上限没有要求:只适用于的范围:,二、 有偏离情况的过程能力指数CPK(一)定义分布中心与公差中心M的偏离=M-,以及与M的偏离度K为:过程能力指数可修正为
12、(适用于偏离量不太大,K1的场合):,产品质量分布的均值与公差中心M不重合的情况,TL,M,(二)过程能力指数CP,偏离度K和不合格品率p之间的关系,(五)过程性能指数长期过程能力指数Pp ,Ppk C系列过程能力指数 Cp无偏移短期过程能力指数 Cpu无偏移上单侧短期过程能力指数 Cpl无偏移下单侧短期过程能力指数 Cpk有偏移短期过程能力指数 P系列过程性能指数 Pp无偏移过程性能指数 Ppu无偏移上单侧过程性能指数 Ppl无偏移下单侧过程性能指数 Ppk有偏移过程性能指数,Ppkmin(Ppu,PpL)(1K)Pp短期过程能力指数与过程性能指数,第四节 常规控制图分析和应用一、合理子组原
13、则 合理子组(rational subgroup)原则 组内差异只由偶因造成 组间差异主要是由异因造成,(1) 图的控制线若、 已知:若、 未知:,-R控制图的控制线,、 未知时,估计值可通过预备数据求得:所以:,从3方式,若R、R已知,有: 若R、R未知,,(2)R图的控制线,由数理统计可以导出:,所以,,图: s图:,-S 图,图: R图:,X图: Rs图:(符号“-”表示取LCL=0作为Rs的自然下界)。,X-Rs 图,先作的图R、s、Rs中,上、下控制限系数分别为D4、D3 ;B4 、B3 ;D4、D3,后作的 中,控制限系数分别为A2;A3 ;X图中控制限系数为n=2时的A3值;Me
14、图中控制限系数为A4。,为平均样本不合格品率。,P 图,nP 图,,Ci、ni分别为第i个样本的单位不合 格数、样本大小, 。,u 图,平均样本不合格数,C 图,1计量值控制图 (1) 控制图 用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。但此图只适用于n10时,R图的效率降低,用s图代替R图。,(3) 图用中位数图代替均值图,多用于需要把测定数据直接记入控制图的场合。它受异常数据的影响较少。 (4) 图为了能够迅速反映现场情况,往往用X图代替图。对于自动化检查和测量的场合;取样费时、昂贵的场合;以及如化工等气体与液体流程型生产的场合,也需要采用图。,2计数值控制图
15、(1)p图用于控制对象为不合格品率或合格品率等计数值质量指标的场合。当样本量大小n变化时,则p图的控制界限UCLp与LCLp将随样本大小n的变化呈现出凹凸状,不便于判稳或判异。,控制图,数据列表,图2-14 上下控制界线均呈现凹凸状的p图,(2)np图用于控制对象为不合格品数的场合。但当样本大小n变化时,np控制图的三条控制线都呈凹凸状,不但作图难,而且无法判稳、判异。故只有在样本大小相同的情况下,才应用此图。,(3)c图用于控制一部机器、一个部件、一定的长度、一定的面积或任何一定的单位中所出现的不合格数目,但当样本量n发生变化时,c图上、中、下控制线将呈凹凸状,不便于判稳或判异。,(4)u图
16、当一定单位的样品的大小发生变化时,则应就不合格数换算成平均每单位的不合格数后再使用此图。但当n发生变化时,u图的二条控制线将呈凹凸状,给作图、判异、判稳造成困难。,(三) -R 控制图的分析 -R控制图(以及 -s控制图)是计量值最常用、最重要的控制图。1. 适用范围广图:若X服从正态分布,则易证 也服从正态分布;若X非正态分布,则根据中心极限定理,可证 近似服从正态分布。关键是这后一点才使 图得以广为应用。R图:通过在计算机上的模拟试验证实:只要X不是非常不对称的,则R的分布无大的变化,故也适用范围广。,2. 灵敏度高图:对于偶波, 会使标准偏差减少,从而使控制线UCL和LCL的间隔缩小。对
17、于异波,由于一般异波所产生的变异往往是同一个方向的,故求平均值的操作对其无影响,因此,当异常时,描点出界就更加容易了,也即灵敏度高。,图:R 图:,-R控制图中,应该先作哪一个? 图与R图控制线的公式:,(1)若先 作图,则由于R 图还未判稳, 的数据不可用,故不可行。(2)若先作R图,则由于R图中只有 一个数据,所以可行。等R图判稳后,再作 图。,(3) - R控制图的操作步骤如下: 步骤1:确定所控制的质量指标 选择技术上最重要的控制对象 指标之间有因果关系,取作为因的指标为统计量 控制对象要明确,并为大家理解与同意 控制对象要能以数字来表示 控制对象要容易测定并对过程容易采取措施 直接选
18、择控制对象困难时采用代用特性进行测定 同时控制多个对象,应用多元控制图与多元诊断,步骤2:取预备数据 样本组数至少取25组,最好再加上5组成为30组,以便必要时可去掉一些异常数据; 样本量(或样本大小)通常取为4或5; 合理子组原则。,步骤3:计算 。步骤4:计算 步骤5:计算R图控制线、 图控制线,并作图。步骤6:将预备数据在R图中打点,判稳。若稳,则进行步骤7;若不稳,则执行“20字方针”后转入步骤2,重新开始。,步骤7:将预备数据在 图中打点,判稳。若稳,则进行步骤8;若不稳,则执行“20字方针”后转入步骤2,重新开始。步骤8:计算过程能力指数并检验其是否满足技术要求,若过程能力指数满足
19、技术要求,由转入步骤9。步骤9:延长X-R控制图的控制线,作控制用控制图,进行日常管理。,三、 R图示例 【例3-1】某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。为了解决停摆问题,再次应用排列图分析造成停摆的原因,结果发现主要是由于螺栓脱落造成的。而后者则由螺栓松动造成。为此,厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。,解:按照下列步骤建立 图: 步骤1:取预备数据,将数据合理分成25组。 步骤2:计算各组样本的平均数 。 步骤3:计算各组样本的极差Ri。 步骤4:计算样本总均值 与平均样本极差 。 步骤5:计算R图与 图的参数,对状
20、态判断。 步骤6:与规范进行比较,计算过程能力。 步骤7:延长上述 图的控制线,对工序进行日常控制。,-R控制图示例的第一次图,控制图示例的第二次图,四、 示例 【例4-1】对【例3-1】选用 步骤1:依据合理分组原则,取得25组预备数据; 步骤2:计算每个子组的平均值和标准差; 步骤3:计算所有观测值的总平均值和平均标准差; 步骤4:计算s图的控制限,绘制控制图; 步骤5:与容差限比较,计算过程能力指数; 步骤6:延长统计控制状态下的控制限,进入控制用控制图阶段,实现对过程的日常控制。,五、XRs图示例 【例5-1】下表给出了连续10批脱脂奶粉的样本“水分含量百分比”的实验室分析结果。将一个
21、样本的奶粉作为一批的代表,在实验室对其成分特性进行分析测试,如脂肪、水分、酸度、溶解指数、沉积物、细菌及乳清蛋白。希望该过程的产品水分含量控制在4一下。由于发现单批内的抽样变差可以忽略,因此决定每批只抽取一个观测值,并以连续各批的移动极差作为设置控制限的基础。,连续10个脱脂奶粉样本的水分含量百分比 (X:%水分含量;R:移动极差),六、MeR图示例 【例6-1】某机器生产点子盘片。规定的厚度为0.007-0.016cm。每隔半小时抽取样本量为5的样本(子组),记录其中心厚度(cm),如下表所示。拟建立一个中位数图以达到控制质量的目的。,云母盘片厚度的控制数据 单位:0.001,七、P控制图
22、(一)p控制图的控制状态指过程的不合格品率为一常数P,且各个产品的生产是独立的。 (二) P图的统计基础P图的统计基础为二项分布。若过程参数P未知,则需对其进行估计。为P的估计值, 为样本平均不合格品率。,于是P图的控制线为:,(三)P图的步骤。需注意: (1)若P很小,则需选样本容量n充分大,使得np1,即使得每个样本水平均有一个不合格品,以免由于总是出现零而对过程产生误解。通常取:,(2)当n变化时,P图的UCL、LCL成凹凸状。作图不便,更无法判稳、判异。GB/T 4091-2001给出两种解决方法。方法一:如果ni变化不大,则采用单一的等于平均子组大小的一组控制限。实际上,当ni变化在
23、其目标值25以内(即 )时可采用该方法。方法二:当ni变化较大时,可采用标准化变量的方法。例如不点绘标准化p值,而改为点绘标准化Zi值。,(四)P控制图示例: 【例7-1】某半导体厂希望对产品进行质量控制,基础数据见附表,在标准值未定的条件下做p图。,【例4.5-5】收音机晶体管的p图(初始数据),步骤1:取预备数据 步骤2:计算样本不合格品率 步骤3:计算平均不合格品率 步骤4:计算p图的控制线 步骤5:作图 步骤6:判稳,示例的P图,八、c图【例8-1】一录像带制造商希望控制录像带中的不合格疵点数。录像带按4000m的长度生产,连续对来自某个过程的20卷录像带(每卷长350m)进行表面检查,得出不合格疵点数的数据。对此生产过程的一个终端进行了研究,下表表给出20卷录像带的有关数据,作为建立c图的预备数据。,录像带的预备数据,九、u图 【例9-1】在某轮胎厂,每半个小时抽检15个轮胎,记 录下总不合格数和单位产品不合格数。决定建立u图 (单位产品不合格数)来研究过程的控制状态。,