收藏 分享(赏)

清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt

上传人:微传9988 文档编号:3331444 上传时间:2018-10-14 格式:PPT 页数:39 大小:695.50KB
下载 相关 举报
清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt_第1页
第1页 / 共39页
清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt_第2页
第2页 / 共39页
清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt_第3页
第3页 / 共39页
清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt_第4页
第4页 / 共39页
清华微积分(高等数学)课件第二十一讲_简单常微分方程(一).ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、2018/10/14,1,作业,P227 习题 8.11(2)(4)(6)(8). 4. P236 习题 8.21(2)(4)(6).,2018/10/14,2,第二十一讲 简单常微分方程(一),一、微分方程的基本概念,二、一阶常微分方程,2018/10/14,3,十七世纪末,力学、天文学、物理 学及工程技术提出大量需要寻求函数 关系的问题。在这些问题中,函数关 系不能直接写出来,而要根据具体问 题的条件和某些物理定律,首先得到 一个或几个含有未知函数的导数的关 系式,即微分方程,然后由微分方程 和某些已知条件把未知函数求出来。,一、微分方程的基本概念,2018/10/14,4,解,2018/

2、10/14,5,根据牛顿第二定律,得到,注意到,从而有,微分方程,初始条件,定解条件,定解问题,2018/10/14,6,定义1: 含有未知函数的导数的方程称为微分方程.,未知函数是一元函数,含有未知函数的导数的微分方程称为常微分方程.,未知函数是多元函数,含有未知函数的偏导数的微分方程称为偏微分方程.,例如,2018/10/14,7,例如,二阶,未知函数的导数的最高阶数称为 微分方程的阶.,定义2: ( 微分方程的阶 ),2018/10/14,8,未知函数及其各阶导数都是一次整式的微分方程称为线性微分方程.,定义3: ( 线性与非线性),2018/10/14,9,定义4: ( 微分方程的解)

3、,称为微分方程的通解.,微分方程的通解:,2018/10/14,10,2018/10/14,11,微分方程的特解:一个常微分方程的满足定解条件 的解称为微分方程的特解,通解有时也写成隐式形式,称为微分方程的通积分,2018/10/14,12,2018/10/14,13,有n个 定解条件,2018/10/14,14,定义5: ( 积分曲线 与积分曲线族),积分曲线族,2018/10/14,15,二、 一阶常微分方程的初等积分法,所谓初等解法,就是用不定积分的方法求解常微分方程.初等解法只适用于若干非常简单的一阶常微分方程,以及某些特殊类型的二阶常微分方程.,2018/10/14,16,(一) 变

4、量可分离型,(三) 一阶线性方程,(二) 可化为可分离变量,(五) 全微分方程,(四) 伯努利(Bernoulli)方程,(六) 积分因子,2018/10/14,17,两边积分,通解,分离变量,这两个方程的共同特点 是变量可分离型,(一) 分离变量法,2018/10/14,18,(1) 解,两边积分,分离变量,即,2018/10/14,19,(分离变量时,这个解被丢掉了!),于是得到方程,通解,2018/10/14,20,(2) 解,分离变量,两端积分, 得,通解,奇异解,2018/10/14,21,(二) 可化为可分离变量,这两个方程的共同特点是什麽 ?,可化为,齐次型方程,2018/10/

5、14,22,求解方法,这是什麽方程?,可分离变量方程!,2018/10/14,23,分离变量,两端积分,2018/10/14,24,取指数并且脱去绝对值,由此又得到,通解,2018/10/14,25,2018/10/14,26,两端积分,得,通解,2018/10/14,27,2018/10/14,28,(三) 一阶线性微分方程,2018/10/14,29,性质1:,性质2:,性质3:,2018/10/14,30,性质4:,性质5:,2018/10/14,31,(1) 如何解齐次方程?,非齐次,齐次,可分离型!,标准形式:,什麽类型?,一阶线性微分方程,2018/10/14,32,分离变量,是p

6、(x)一个原函数不是不定积分!,齐次通解,解得,注意:,齐次通解的结构:,2018/10/14,33,(2)用常数变异法解非齐次方程,假定(1)的解具有形式,将这个解代入(1) , 经计算得到,2018/10/14,34,化简得到,即,2018/10/14,35,积分,从而得到非齐次方程(1)的通解,非齐次通解,或,2018/10/14,36,非齐次通解的结构:,特解,非齐次特解,2018/10/14,37,2018/10/14,38,这是线性方程吗?,是关于函数 x=x(y) 的一阶线性方程!,解,变形为:,第一步:先求解齐次方程,齐次方程通解是,2018/10/14,39,第二步:用常数变异法解非齐次方程,假设非齐次方程的解为,代入方程并计算化简,积分得,通解,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医学治疗 > 基础医学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报