1、第七章 纯化蛋白的浓缩、干燥和保存 (The concentration, dry and preservation of protein),本章内容,第一节 浓缩 (Concentration)第二节 干燥 (Dry)第三节 纯化蛋白制成品的保存 (The preservation of purified protein production)第四节 蛋白质和酶保存方法 (The preservation method of protein and enzyme),第一节 样品浓缩,生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:,
2、减压加温蒸发浓缩 空气流动蒸发浓缩 冷冻干燥浓缩法超滤膜浓缩法浓缩胶浓缩法离子交换法和吸附法,一、减压加温蒸发浓缩,通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。,空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流; 吹干浓缩法:将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。,二、空气流动蒸发浓缩,这是浓缩蛋白质的一种较好的办法,它既使蛋白质不易变性,又保持蛋白质中固有的成分。它是在冰冻状态下直接升华去除水分。 具体做法是将
3、蛋白液在低温下冰冻,然后移置干燥器内(干燥器内装有干燥剂,如NaOH、CaCl2和硅胶等)。密闭,迅速抽空,并维持在抽空状态。数小时后即可获得含有蛋白的干燥粉末。干燥后的蛋白质保存方便,应用时可配成任意浓度使用。也可采用冻干机进行冷冻干燥。,三、冷冻干燥浓缩法,所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。,四、吸收法通过吸收剂直接收除去溶液中溶液分子
4、使之浓缩。,超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。,五、超滤法,diaflo超滤膜的分子量截留值,用上面的超滤膜制成空
5、心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。,利用透析袋浓缩蛋白质溶液是应用最广的一种。将要浓缩的蛋白溶液放进透析袋(无透析袋可用玻璃纸代替),结扎,把高分子(6 00012 000)聚合物如聚乙二醇(碳蜡)、聚乙烯吡咯、烷酮等或蔗糖撒在透析袋外即可。也可将吸水剂配成3040浓度的溶液,将装有蛋白液的透析袋放进即可。吸水剂用过后,可放进温箱中烘干或自然干燥后,仍可再用。,透析袋
6、浓缩法,将蛋白溶液装进透析袋内,放在电风扇下吹。此法简单,但速度慢,且温度不能过高,最好不要超过15。,吹干浓缩法,选用孔径较小的凝胶,如SephadexG25或G50,将凝胶直接加进蛋白溶液中。根据干胶的吸水量和蛋白液需浓缩的倍数而称取所需的干胶量。放进冰箱内,凝胶粒子吸水后,通过离心除往。,凝胶浓缩法,浓缩胶是一种高分子网状结构的有机聚合物,具有很强的吸水性能。每克干胶可吸水120ml150ml。它能吸收低分子量的物质,如水、葡萄糖、蔗糖、无机盐等,适宜浓缩10 000分子量以上的生物大分子物质。浓缩后,蛋白质的回收率可达8090。比浓缩胶应用方便,直接加进被浓缩的溶液中即可。必须留意,浓
7、缩溶液的pH值应大于被浓缩物质的等电点,否则在浓缩胶表面产生阳离子交换,影响浓缩物质的回收率。,浓缩胶浓缩法,生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。,二、干燥,生物大分子的稳定
8、性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持04度冰箱即可,液态贮藏时应注意以下几点。1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求
9、更低,应视不同物质而定。,三、贮存,蛋白质药物的冷冻干燥技术,冷冻干燥技术最早于1813年由英国人Wollaston发明。1909年Shsckell试验用该方法对抗毒素、菌种、狂犬病毒及其它生物制品进行冻干保存,取得了较好效果。在第二次世界大战中,对血液制品的大量需求大大刺激了冷冻干燥技术的发展,从此该技术进入了工业应用阶段。此后,制冷和真空设备的飞速发展为快速发展冷冻干燥技术提供了强有力的物质条件。进入上个世纪的八九十年代,科学技术的迅猛发展和人民群众对健康保障的需求为药品冷冻干燥技术的飞速发展提供了强大的动力,在药品冻干损伤和保护机理、药品冻干工艺、药品冷冻干燥机等方面取得了巨大的成绩,由
10、于冻干药品呈多孔状、能长时间稳定贮存、并易重新复水而恢复活性,因此冷冻干燥技术广泛应用于制备固体蛋白质药物、口服速溶药物及药物包埋剂脂质体等药品。 但药品冷冻干燥技术是一门边缘学科,需要生物学、药学、制冷、真空和控制等知识的交叉和综合,因此仍存在亟待解决的问题。,药品冷冻干燥是指把药品溶液在低温下冻结,然后在真空条件下升华干燥,除去冰晶,待升华结束后再进行解吸干燥,除去部分结合水的干燥方法。 该过程主要可分为:药品准备、预冻、一次干燥(升华干燥)和二次干燥(解吸干燥)、密封保存等五个步骤。药品按上述方法冻干后,可在室温下避光长期贮存,需要使用时,加蒸馏水或生理盐水制成悬浮液,即可恢复到冻干前的
11、状态。,(一) 药品冷冻干燥原理及特点,与其它干燥方法相比,药品冷冻干燥法具有非常突出的优点和特点:,药液在冻结前分装,剂量准确;在低温下干燥,能使被干燥药品中的热敏物质保留下来;在低压下干燥,被干燥药品不易氧化变质,同时能因缺氧而灭菌或抑制某些细菌的活力;冻结时被干燥药品可形成“骨架”,干燥后能保持原形,形成多孔结构而且颜色基本不变;复水性好,冻干药品可迅速吸水还原成冻干前的状态;脱水彻底,适合长途运输和长期保存。,虽然药品冷冻干燥具有上述优点,但是干燥速率低、干燥时间长、干燥过程能耗高和干燥设备投资大等仍是该技术的突出缺点。,(二) 药品冻干损伤和保护机理,药品冷冻干燥是一个多步骤过程,会
12、产生多种应力使药品变性,如低温应力、冻结应力和干燥应力。其中冻结应力又可分为枝状冰晶的形成,离子浓度的增加,pH值的改变和相分离等情况。因此,为了保护药品的活性,通常在药品配方中添加活性物质的保护剂。它需要具备四个特性:玻璃化转变温度高、吸水性差、结晶率低和不含还原基。,常用的保护剂有如下几类物质:,糖类/多元醇:蔗糖、海藻糖、甘露醇、乳糖、葡萄糖、麦芽糖等;聚合物:HES、PVP、PEG、葡聚糖、白蛋白等;无水溶剂:乙烯乙二醇、甘油、DMSO、DMF等;表面活性剂:Tween 80等; 氨基酸:L-丝氨酸、谷氨酸钠、丙氨酸、甘氨酸、肌氨酸等;盐和胺:磷酸盐、醋酸盐、柠檬酸盐等;,由于冷冻干燥
13、过程存在多种应力损伤,因此保护剂保护药品活性的机理也是不同的,可以分为低温保护和冻干保护。,优先作用原理,对于低温保护,目前被广为接受的液体状态下蛋白质稳定的机理之一是优先作用原理。 优先作用是指蛋白质优先与水或水溶液中的保护剂作用。在有起稳定作用的保护剂存在的条件下,蛋白质优先与水作用(优先水合),而保护剂优先被排斥在蛋白质区域外(优先排斥)。在这种情况下,蛋白质表面就比其内部有较多的水分子和较少的保护剂分子。 优先作用原理同样适用于冷冻融解过程。蛋白质保护剂,在溶液中被从蛋白质表面排斥,在冻结过程中能够稳定蛋白质。但是优先作用机理不能完全解释用聚合物或蛋白质自身在高浓度时保护蛋白质的现象。
14、,水替代假说。许多研究者认为由于蛋白质分子中存在大量氢键,结合水通过氢键与蛋白质分子联结。当蛋白质在冷冻干燥过程中失去水分后,保护剂的羟基能替代蛋白质表面的水的羟基,使蛋白质表面形成一层假定的水化膜,这样可保护氢键的联结位置不直接暴露在周围环境中,稳定蛋白质的高级结构,防止蛋白质因冻干而变性,使其即使在低温冷冻和干燥失水的情况下,仍保持蛋白质结构与功能的完整性。,在冻干过程中,由于蛋白质的水合层被除去,优先作用机理不再适用。对于冻干保护机理,仍在研究探讨之中,目前主要有两种:,玻璃态假说。研究者认为在含保护剂溶液的干燥过程中,当浓度足够大且保护剂的结晶不会发生时,保护剂水混合物就会玻璃化。研究
15、发现在玻璃态下,物质兼有固体和流体的行为,粘度极高,不容易形成结晶,且分子扩散系数很低,因而具有粘性的保护剂包围在蛋白质分子的周围,形成一种在结构上与玻璃状的冰相似的碳水化合物玻璃体,使大分子物质的链锻运动受阻,阻止蛋白质的伸展和沉淀,维持蛋白质分子三维结构的稳定,从而起到保护作用。,目前大部分学者赞同“水替代假说”,因为可以通过实验检测到蛋白质和保护剂之间的氢键,为理论提供证据。事实上,无论是“水替代假说”还是“玻璃态假说”,它们的基础都是基于药液实现了部分或全部玻璃化冻结。,(三) 冻干工艺及优化,由于药品冷冻干燥过程会产生多种应力,对冻干药品的药性有很大的影响,因此对药品冷冻干燥过程进行
16、合理设计,对于减少冻干损伤和提高冻干药品的质量有重大的意义。,1、冻结研究冷冻干燥过程中的冻结过程非常重要,因为在冻结中形成的冰晶形态和大小以及玻璃化程度不仅影响后继的干燥速率,而且影响冻干药品的质量。因此在冻结过程中必须考虑配方、冻结速率、冻结方式、以及是否退火等问题。,1.1 配方的影响,配方中的固体含量会影响冻结和干燥过程。如果固体含量少于2%,那么冻干药品结构的机械性能就会不稳定。尤其在干燥过程中,药品微粒不能粘在基质上,逸出的水蒸气会把这些微粒带到小瓶的塞子上,有时甚至会带到真空室当中。此外,为了获得均匀一致、表面光滑、稳定的蛋白质药品,配方中必须含有填充剂、赋形剂、稳定剂等保护剂,
17、这些保护剂对实现药品的玻璃化冻结有重大的影响。,很多糖类或多元醇经常被用于溶液冻融和冻干过程中非特定蛋白质的稳定剂,它们既是有效的低温保护剂又是很好的冻干保护剂,它们对冻结的影响取决于种类和浓度。但是蛋白质种类很多,而且物理化学性质各异,因此不同的蛋白质需要不同的保护剂配方,因此它们的冻结特性就不同,一般需要实验。,冻结方式不同,产生的冰晶的形态和大小就不同,而且会影响后继的干燥速率和冻干药品质量。根据冻结机理,可以把冻结分为全域过冷结晶和定向结晶两类。全域过冷结晶是指全部药液处于相同或相近的过冷度下进行冻结的方式。在全域过冷结晶中,冻结速率和冰晶成核温度是重要的参数。全域过冷结晶按冻结速率的
18、快慢可分为慢速冻结和快速冻结。快速冻结的冰晶细小,而且没有冻结浓缩现象,但是存在不完全冻结现象。相反,慢速冷却产生较大的冰晶,并且存在冻结浓缩的现象。,1.2 冻结方式,定向结晶是指一小部分药液处于过冷状态下进行冻结的方式。Thomas W Patapoff介绍了一种垂直冻结方式。溶液用湿冰冷却,在瓶子底部用干冰冷却,形成晶核,然后放到-50的搁板上冻结。用这种方式冻结的样品的冰晶在垂直方向呈现烟囱状,在药品表面没有冻结浓缩层,而且整个药品的结构均一性很好,因此在干燥时的传质阻力很小,加快了冻干速率。冻结方式不同,产生的冰晶形态和大小就不同,后继的干燥速率也不同。实验证明,采用定向结晶方式的冻
19、结药品的干燥速率比全域过冷结晶的快。但是无论采用哪种冻结方式,药品溶液必须部分或全部实现玻璃化冻结,以保护药品药性。,1.3 退火,退火是指把冻结药品温度升到共熔温度以下,保温一段时间,然后再降低温度到冻结温度的过程。在升华干燥之前增加退火步骤,至少有三个原因:,强化结晶。在冻结过程特别是快速冻结过程中,配方中结晶成分往往来不及完全结晶。但是如果该成分能为冻干药品结构提供必要的支撑或者蛋白质在该成分完全结晶后会更稳定,那么就有必要完全结晶。此外,冻结浓缩液中也会有一部分水来不及析出,使其达不到最大浓缩状态。实验证明,当退火的温度高于配方的最大浓缩液玻璃化转变温度Tg时,会促进再结晶的形成使结晶
20、成分和未冻结水结晶完全。,提高非晶相的最大浓缩液玻璃化转变温度Tg。从非晶相中除去Tg较低的结晶成分,能够提高非晶相的Tg。Barry J Aldous在研究非晶态碳水化合物的水合物结晶规律时发现,经过退火之后的海藻糖干燥溶液的玻璃化转变温度由31上升到79,大大提高了稳定作用。改变冰晶形态和大小分布,提高干燥效率。研究证实退火过程中的相行为和重结晶可以减小由于成核温度差异造成的冰晶尺寸差异及干燥速率的不均匀性,提高干燥效率和药品均匀性。,为了达到退火目的,在退火操作中,必须考虑加热速率、退火温度、退火时间等参数。但是目前由于实验手段不够先进和理论知识比较缺乏,退火机理尚有疑问,退火参数的选取
21、仍然没有依据。,药品冷冻干燥的干燥过程可以分为两个阶段,一次干燥和二次干燥。在一次干燥阶段除去自由水,在二次干燥阶段除去部分结合水。干燥过程占据了药品冷冻干燥过程的大部分能耗,因此采取有效措施提高干燥速率显得非常有意义。目前,大都采取控制搁板和药品温度、冷阱温度和真空度的做法来实现干燥速率的提高。药品温度的控制。包括冻结层和已干层的温度控制。控制冻结层温度的原则是在保证冻结层不发生熔化(在低共熔点以下)的前提下,温度越高越好。控制已干层温度的原则是在不使物料变性或已干层结构崩塌的前提下、尽量采用较高的干燥温度。而搁板温度的控制是以满足药品温度控制为标准。,2、 干燥,冷阱温度。冻干过程中水升华
22、的驱动力是药品和冷阱间的温差。由于药品温度受加热方式的限制,同时不能高于共熔温度,因此冷阱温度越低越好。为了提高经济性,在升华干燥过程中应至少低于药品温度20;在解吸干燥过程中,对于那些要求很低残余水分的配方,冷阱温度要求更低。,一般认为,压力对冻干过程有正反两方面的影响:a) 在药品共熔点温度和崩塌温度以下,升华界面温度越高,升华水汽越多,所需热量越大。压力越高,相应提高了已干层导热系数,表面对流作用也越大,因此升华水汽也越快,即冻干速率越大。b) 升华界面通过已干层到外部的水汽逸出速度与界面和表面之间的压力差,即界面温度所对应的饱和压力与干燥室的真空度之差相关。这个压差大,有助于水汽逸出。
23、这个压差越小,逸出越慢,干燥速率也越小。如果冷冻干燥是传热控制过程,则干燥速率随着干燥室压力升高而提高;如果冷冻干燥是传质控制过程,干燥速率随着干燥室压力升高而降低。,真空度,经验证明升华阶段的真空度在1030Pa时,既有利于热量的传递,又利于升华的进行。若压强过低,则对传热不利,药品不易获得热量,升华速率反而降低,而且对设备的要求也更高,增加了成本。而当压强过高时,药品内冰的升华速度减慢,药品吸收热量将减少,于是药品自身的温度上升,当高于共熔点温度时,药品将发生熔化导致冻干失败 药品冷冻干燥过程是一个连续的操作,不同的药品配方,有不同的冻结特性,而且冻干曲线也不同,因此应在基础研究的基础上广
24、泛开展个体研究,优化冻干曲线,提高干燥速率,降低能耗。,药品冷冻干燥机的分类方法很多,按其搁板面积可分为大、中、小三种类型,通常冻干面积小于1.5m2为小型,介于1.5m2至50m2之间为中型,大于50m2为大型;按其目的和用途可分为实验型冻干机、中试型冻干机和工业生产型冻干机。 药品冷冻干燥机主要由干燥箱、真空系统、制冷系统、冷阱系统、加热系统、加盖系统、自动控制系统等几大部分组成。此外,大中型冷冻干燥机还常有蒸气灭菌系统(SIP)、在位清洗系统(CIP)。,5、药品冷冻干燥机,制冷系统,制冷系统分别为冷冻干燥箱和冷阱系统提供冷源。目前采用的单级制冷压缩循环的板层制冷温度约在-35-40之间
25、,冷阱温度在-50左右;双级制冷压缩循环的板层制冷温度在-45-50之间,冷阱温度在-65左右;复叠式制冷循环的板层制冷温度在-55-60之间,冷阱温度在-75左右。,冷冻干燥机的控制,冷冻干燥机的控制主要是对制冷机、真空机组、加热功率的起停及温度的控制,对真空度、温度的测定、监控、以及自动保护、报警装置等。采用全自动控制或微电脑控制的冻干机都能显示各主要部件的工作状态,显示干燥箱内搁板和药品的温度、真空度、捕水器温度,都能进行参数设定、修改和实时显示。,药品冷冻干燥机必须执行GMP规范标准,实现高度无菌化、无尘化,达到高度可靠、安全、维护简便。为此药品冷冻干燥机往往采用蒸气灭菌系统(SIP)
26、以保证灭菌彻底、无死角。同时辅以在位清洗系统(CIP),对干燥室、冷凝器、主阀及管道进行就地清洗预设排液坡度,保证无液体滞留。同时具有应对停电、停水、误操作的保护措施,一旦出现故障,可以对药品实行保护;实现冻干机操作运行的计算机控制,具有停电停水三对策系统,可以多路联锁自动报警。由于药品冷冻干燥机必须执行GMP规范标准,因此今后药品冷冻干燥机的研究仍将朝着无菌化和高度可靠性的方向进行,如自动进料方式、真空控制方式等的研究。,随着生物技术的高速发展,多肽蛋白质类药物不断涌现,可应用于临床的多肽、蛋白酶、激素、疫苗、细胞生长因子及单克隆抗体等成为开发重点。为防止药品变性,目前广泛采用冷冻干燥法制备
27、称固态药品。经过几十年的发展,药品冷冻干燥技术虽然有了很大的进展,但是仍存在不少问题,亟需解决。在冷冻干燥过程中会产生多种冻结和干燥应力,使药品发生不同程度的变性,而且冻干法本身也存在干燥速率低、干燥时间长、干燥过程能耗高和干燥设备投资大等缺点。因此为了提高药品的稳定性和经济性,必须对药品在冻干过程中的损伤和保护机理进行进一步的研究,同时利用先进的制冷和真空设备及控制手段开发价格低、性能好的冷冻干燥机,继续完善低温低压下的传热传质理论,优化冻干工艺。,冷冻干燥的操作程序,1、准备工作 产品共熔点的测定:水溶液的冰点会低于溶媒的冰点冷却溶媒液开始析出晶体的温度称为冰点,全部凝结的温度叫做溶液的凝
28、固点。反之,加热凝固的溶媒时,凝固点就是溶化的开始点,所以凝固点又叫共熔点。,一方面,由于冷冻干燥是在真空状态下进行,所以要求含有产品的溶媒液全部冻结后方可在真空下进行升华,否则未冻结的部分液体会在真空下迅速蒸发,造成溶媒的浓缩而使干产品的体积缩小,而且溶解在水中的气体在真空下迅速冒出来,使冻干产品冒泡,甚至被带出瓶外。为此冻结的溶媒在升华开始时必须冷却到共熔点以下的温度,才能使干产品真正冻结。另一方面,低温加热升华时不得超过共熔点的温度,否则产品发生溶化,干燥后的产品将发生体积缩小,出现气泡,颜色加深,溶解困难等现象。因此,可以说共熔点的测定是实验成败的关键。实验室常用测共熔点的方法有惠斯顿
29、电桥法、临界电阻法、差式热分析法和低温显微镜直接观察法。,测定共熔点的必要性,2、产品的预冻,需冻干的产品要配制成一定浓度的液体,一般在425%为宜。产品的分装:散装和瓶装。散装可采用金属盘、饭盒或玻璃器皿;瓶装采用玻璃瓶(如:血浆瓶、疫苗瓶和青霉素小瓶等)和安瓶(如平底安瓶、长安瓶和园安瓶等),各容器在分装之前要求清洗干净并进行灭菌处理。产品的分装的要求:一般厚度不大于15cm,表面积尽可能大,这样有利于升华。,预冻的方法:1、箱内预冻法:直接把产品放置在冻干机冻干箱内的多层隔板上进行冷冻;2、箱外预冻法:一种方法是低温冰箱或酒精加干冰来进行预冻。另一种方法是专用的旋冻器,可把大瓶的产品边旋
30、转边冷冻成壳状结构再进冻干箱;3、特殊预冻法,离心式预冻法,利用在真空下液体迅速蒸发,吸收本身的热量而冻结,一般800转/min。预冻时要注意的问题:1、预冻速率,应根据产品选择最优速率;2、预冻的最低温度,应低于共熔点温度;3、预冻时间,应恰好在抽真空之前(因此要提前使冷凝器工作,达到40时,真空度达到100Hg)溶媒均已冻实(经验值:一般预冻达到规定的温度后,再保存12h就可以抽真空升华)。,3、产品第一阶段的干燥,升华干燥阶段加热的温度应接近于共熔点的温度,但又不能超过共熔点的温度。第一阶段使溶媒内冻结冰大部分升华,因此也称该过程为升华干燥阶段。升华是一个吸热的过程,因此必须对产品低温加
31、热,但绝不能超过共熔点的温度。如果加热的温度低于共熔点的温度过多,则升华的速率降低而延长了升华阶段的时间。影响升华干燥阶段的因素:1、产品的本身,共熔点较高的产品易干燥,升华时间短;2、产品的分装厚度,正常的升华速率大约每小时产品下降1mm的厚度;3、冻干机本身的性能,真空性能、冷凝器的温度和效能。,一旦产品内冻结的冰大部分(约90冰已升华)升华完毕,产品的干燥进入第二阶段,即解吸干燥阶段。 解吸干燥阶段,可以迅速使产品产品的温度上升到该产品的最高容许温度(2540),并在该温度下一直维持到冻干结束,4、维持阶段,使得冻干箱加热隔板的温度接近于产品共熔点的温度,维持12h左右,使产品中大部分动
32、结冰升华。(实验室常用的方法即过夜处理,因此实验前要预计实验进程),5、产品第二阶段的干燥,6、最后维持阶段即冻干结束,怎样判断冻干结束?产品的温度达到最高许可的温度,并在这个温度保存2h以上。冻干结束后,要把产品放入无菌干燥箱,然后尽快加塞封口,以防止重新吸收空气的水份。,三、冻干曲线的制作和时序的制定,生物制品的冷冻干燥产品常需要一定的物理形态,如均匀的颜色、符合要求的含水量、良好的溶解性、高的存活率和较长的保存期。因此要优化各干燥步骤的参数,冻干曲线和时序就是进行冷冻干燥过程控制的基本依据。冻干曲线是冻干箱隔板层的温度(干燥中产品温度受隔板层温度控制)和时间的关系曲线。冻干时序是在冻干过
33、程中,各设备起闭运行的情况。,制定冻干曲线和时间需要确定下列数据:,预冻速率 实验室常用预冻温度和装箱时间来决定预冻速率。要求预冻速率快,则冻干箱先降至较低温度,然后再装箱;要求预冻速率慢,则产品装箱之后再让冻干箱降温。预冻的最低温度:预冻最低温度低于产品共熔点的温度。预冻时间 一般要求在样品温度到达预订温度之后再保持12h。注意:一般不赞成直接把溶媒直接放在冷冻箱的隔板层上干燥。,真空控制时间真空控制目的是为了改进冻干箱的热量传递,通常在第二阶段干燥时使用,待产品温度达到最高许可温度后停止使用,继续恢复高真空状态。产品加热的最高许可温度升华过程中,加热温度可以略超过产品的最高许可温度,但在最后阶段隔板层温度应与产品最高许可温度一致。冻干的时间:1824h,冷凝器降温的时间 要求在预冻结束抽真空的时候,冷凝器的温度要到达40以下。冷凝器的降温通常从开始一直持续到冻干结束为止,温度始终应在40以下。E预冻结束时间预冻结束就是停止冻干箱隔板层的降温,通常在抽真空时(或真空度达到一定值时)停止隔板层的降温。F抽真空时间预冻结束即开始抽真空,直至干燥结束。,部分物质的共熔点,