数学重要的思想方法:1数形结合的思想2.函数与方程的思想:函数与方程可以相互转化,注意运用函数与方程的思想解决问题;3.分类讨论的思想 在求解数学问题中,遇到下列情形常常要进行分类讨论涉及的数学概念是分类定义的;运用的数学定理、公式或运算性质、法则是分类给出的;求解的数学问题的结论有多种情况或多种可能性;由运算的限制条件引起的分类由实际问题的实际意义引起的分类数学问题中含有参变量,这些参变量的不同取值会导致不同的结果较复杂的或非常规的数学问题,需要采取分类讨论的解题策略来解决的由图形的不确定性引起分类4转化与化归的思想在处理问题时,把待解决或难解决的问题,采用某种手段通过某种转化过程,将问题进行变换和转化,归结为一类已经解决或容易解决的熟知问题,进而实现解决问题的目的,就是转化与化归的思想方法这种思想方法一般总是将复杂的问题变换转化为简单的问题,把抽象的问题转化为具体的问题,把未知的问题转化为已知的问题,把难解的问题转化为容易求解的问题,从而找到解决问题的突破口,转化在高中数学中具有神奇的威力,要在今后的学习中不断体会、总结、积累,逐步形成能力