1、引言 5G技术场景 5G关键技术 5G概念 5G技术路线 总结与展望 主要贡献单位 P1 P2 P4 P8 P10 P12 P14 目录 目录 IMT-2020(5G)推进组 5G概念白皮书IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架 构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。推进组是聚合中国产学研用力 量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。移动通信自20世纪80年代诞生以来,经过三十多年的爆发式 增长,已成为连接人类社会的基础信息网络。移动通
2、信的发展不 仅深刻改变了人们的生活方式,而且已成为推动国民经济发展、 提升社会信息化水平的重要引擎。随着4G进入规模商用阶段,面 向2020年及未来的第五代移动通信(5G)已成为全球研发热点。 在全球业界的共同努力下,5G愿景与关键能力需求已基本明 确,预计2016年将启动国际标准制定工作。为使5G技术研发和标 准化形成合力,需尽快明确5G概念、技术路线与核心技术,这将 对凝聚全球业界力量,推动5G发展具有极其重要的意义。 本白皮书从5G愿景与需求出发,分析归纳了5G主要技术场 景、关键挑战和适用关键技术,提取了关键能力与核心技术特征 并形成5G概念,在此基础上,结合标准与产业趋势,提出了5G
3、 适合的技术路线。 引言 1 IMT-2020(5G)推进组 5G概念白皮书5G 5G 技术场景 技术场景 2 IMT-2020(5G)推进组 5G概念白皮书 面向2020年及未来,移动互联网和物联网业务将成为移动通 信发展的主要驱动力。5G将满足人们在居住、工作、休闲和交通 等各种区域的多样化业务需求,即便在密集住宅区、办公室、体育 场、露天集会、地铁、快速路、高铁和广域覆盖等具有超高流量密 度、超高连接数密度、超高移动性特征的场景,也可以为用户提供 超高清视频、虚拟现实、增强现实、云桌面、在线游戏等极致业务 体验。与此同时,5G还将渗透到物联网及各种行业领域,与工业 设施、医疗仪器、交通工
4、具等深度融合,有效满足工业、医疗、交 通等垂直行业的多样化业务需求,实现真正的“万物互联”。 5G将解决多样化应用场景下差异化性能指标带来的挑战, 不同应用场景面临的性能挑战有所不同,用户体验速率、流量密 度、时延、能效和连接数都可能成为不同场景的挑战性指标。从 移动互联网和物联网主要应用场景、业务需求及挑战出发,可归 纳出连续广域覆盖、热点高容量、低功耗大连接和低时延高可靠 四个5G主要技术场景。 连续广域覆盖和热点高容量场景主要满足2020年及未来的移 动互联网业务需求,也是传统的4G主要技术场景。 连续广域覆盖场景是移动通信最基本的覆盖方式,以保证 用户的移动性和业务连续性为目标,为用户
5、提供无缝的高 速业务体验。该场景的主要挑战在于随时随地(包括小区 边缘、高速移动等恶劣环境)为用户提供100Mbps以上的 用户体验速率。 热点高容量场景主要面向局部热点区域,为用户提供极高 的数据传输速率,满足网络极高的流量密度需求。1Gbps 用户体验速率、数十Gbps峰值速率和数十Tbps/km 2 的流 量密度需求是该场景面临的主要挑战。5G主要技术场景 连续广域覆盖 热点高容量 低功耗大连接 低时延高可靠 3 IMT-2020(5G)推进组 5G概念白皮书 低功耗大连接和低时延高可靠场景主要面向物联网业务,是 5G新拓展的场景,重点解决传统移动通信无法很好支持地物联网 及垂直行业应用
6、。 低功耗大连接场景主要面向智慧城市、环境监测、智能农 业、森林防火等以传感和数据采集为目标的应用场景,具 有小数据包、低功耗、海量连接等特点。这类终端分布范 围广、数量众多,不仅要求网络具备超千亿连接的支持能 力,满足100万/km 2 连接数密度指标要求,而且还要保证 终端的超低功耗和超低成本。 低时延高可靠场景主要面向车联网、工业控制等垂直行业 的特殊应用需求,这类应用对时延和可靠性具有极高的指 标要求,需要为用户提供毫秒级的端到端时延和接近100% 的业务可靠性保证。 5G主要场景与关键性能挑战 场景 关键挑战 连续广域覆盖 100Mbps用户体验速率 热点高容量 用户体验速率:1Gb
7、ps 峰值速率: 数十Gbps 流量密度: 数十Tbps/km 2低功耗大连接 低时延高可靠 连接数密度: 10 6/km 2 超低功耗,超低成本 空口时延: 1ms 端到端时延: ms量级 可靠性: 接近100%4 5G 5G 关键技术 关键技术 5G技术创新主要来源于无线技术和网络技术两方面。在无线 技术领域,大规模天线阵列、超密集组网、新型多址和全频谱接 入等技术已成为业界关注的焦点;在网络技术领域,基于软件定 义网络(SDN)和网络功能虚拟化(NFV)的新型网络架构已取 得广泛共识。此外,基于滤波的正交频分复用(F-OFDM)、 滤波器组多载波(FBMC)、全双工、灵活双工、终端直通
8、(D2D)、多元低密度奇偶检验(Q-ary LDPC)码、网络编 码、极化码等也被认为是5G重要的潜在无线关键技术。 大规模天线阵列在现有多天线基础上通过增加天线数可支持 数十个独立的空间数据流,将数倍提升多用户系统的频谱效率, 对满足5G系统容量与速率需求起到重要的支撑作用。大规模天线 阵列应用于5G需解决信道测量与反馈、参考信号设计、天线阵列 设计、低成本实现等关键问题。 超密集组网通过增加基站部署密度,可实现频率复用效率 的巨大提升,但考虑到频率干扰、站址资源和部署成本,超密集 组网可在局部热点区域实现百倍量级的容量提升。干扰管理与抑 制、小区虚拟化技术、接入与回传联合设计等是超密集组网
9、的重 要研究方向。 新型多址技术通过发送信号在空/时/频/码域的叠加传输来 实现多种场景下系统频谱效率和接入能力的显著提升。此外,新 型多址技术可实现免调度传输,将显著降低信令开销,缩短接入 时延,节省终端功耗。目前业界提出的技术方案主要包括基于多 维调制和稀疏码扩频的稀疏码分多址(SCMA)技术,基于复数 IMT-2020(5G)推进组 5G概念白皮书 5G无线关键技术5 多元码及增强叠加编码的多用户共享接入(MUSA)技术, 基于非正交特征图样的图样分割多址(PDMA)技术以及基 于功率叠加的非正交多址(NOMA)技术。 全频谱接入通过有效利用各类移动通信频谱(包含高低 频段、授权与非授权
10、频谱、对称与非对称频谱、连续与非连续 频谱等)资源来提升数据传输速率和系统容量。6GHz以下频 段因其较好的信道传播特性可作为5G的优选频段,6 100GHz 高频段具有更加丰富的空闲频谱资源,可作为5G的辅助频 段。信道测量与建模、低频和高频统一设计、高频接入回传一 体化以及高频器件是全频谱接入技术面临的主要挑战。 IMT-2020(5G)推进组 5G概念白皮书5G网络架构 未来的5G网络将是基于SDN、NFV和云计算技术的更加 灵活、智能、高效和开放的网络系统。5G网络架构包括接入 云、控制云和转发云三个域。接入云支持多种无线制式的接 入,融合集中式和分布式两种无线接入网架构,适应各种类
11、型的回传链路,实现更灵活的组网部署和更高效的无线资源 管理。5G的网络控制功能和数据转发功能将解耦,形成集中 统一的控制云和灵活高效的转发云。控制云实现局部和全局 5G网络关键技术6 连续广域覆盖、热点高容量、低时延高可靠和低功耗大连接 等四个5G典型技术场景具有不同的挑战性指标需求,在考虑不同 技术共存可能性的前提下,需要合理选择关键技术的组合来满足 这些需求。 在连续广域覆盖场景,受限于站址和频谱资源,为了满足 100Mbps用户体验速率需求,除了需要尽可能多的低频段资源 外,还要大幅提升系统频谱效率。大规模天线阵列是其中最主要 的关键技术之一,新型多址技术可与大规模天线阵列相结合,进 一
12、步提升系统频谱效率和多用户接入能力。在网络架构方面,综 合多种无线接入能力以及集中的网络资源协同与QoS控制技术, 为用户提供稳定的体验速率保证。 在热点高容量场景,极高的用户体验速率和极高的流量密 度是该场景面临的主要挑战,超密集组网能够更有效地复用频 率资源,极大提升单位面积内的频率复用效率;全频谱接入能 够充分利用低频和高频的频率资源,实现更高的传输速率;大 规模天线、新型多址等技术与前两种技术相结合,可实现频谱 IMT-2020(5G)推进组 5G概念白皮书 的会话控制、移动性管理和服务质量保证,并构建面向业务的网 络能力开放接口,从而满足业务的差异化需求并提升业务的部署 效率。转发云
13、基于通用的硬件平台,在控制云高效的网络控制和 资源调度下,实现海量业务数据流的高可靠、低时延、均负载的 高效传输。 基于“三朵云”的新型5G网络架构是移动网络未来的发展方 向,但实际网络发展在满足未来新业务和新场景需求的同时,也 要充分考虑现有移动网络的演进途径。5G网络架构的发展会存在 局部变化到全网变革的中间阶段,通信技术与IT技术的融合会从 核心网向无线接入网逐步延伸,最终形成网络架构的整体演变。 5G场景和关键技术的关系7 IMT-2020(5G)推进组 5G概念白皮书 效率的进一步提升。 在低功耗大连接场景,海量的设备连接、超低的终端功 耗与成本是该场景面临的主要挑战。新型多址技术通
14、过多用户 信息的叠加传输可成倍提升系统的设备连接能力,还可通过免 调度传输有效降低信令开销和终端功耗;F-OFDM和FBMC 等新型多载波技术在灵活使用碎片频谱、支持窄带和小数据 包、降低功耗与成本方面具有显著优势;此外,终端直接通信 (D2D)可避免基站与终端间的长距离传输,可实现功耗的有 效降低。 在低时延高可靠场景,应尽可能降低空口传输时延、网 络转发时延及重传概率,以满足极高的时延和可靠性要求。为 此,需采用更短的帧结构和更优化的信令流程,引入支持免调 度的新型多址和D2D等技术以减少信令交互和数据中转,并运 用更先进的调制编码和重传机制以提升传输可靠性。此外,在 网络架构方面,控制云
15、通过优化数据传输路径,控制业务数据 靠近转发云和接入云边缘,可有效降低网络传输时延。5G主要场景和适用技术8 5G 5G 概念 概念 回顾移动通信的发展历程,每一代移动通信系统都可以 通过标志性能力指标和核心关键技术来定义,其中,1G采用 频分多址(FDMA),只能提供模拟语音业务;2G主要采用 时分多址(TDMA),可提供数字语音和低速数据业务;3G 以码分多址(CDMA)为技术特征,用户峰值速率达到2Mbps 至数十Mbps,可以支持多媒体数据业务;4G以正交频分多 址(OFDMA)技术为核心,用户峰值速率可达100Mbps至 1Gbps,能够支持各种移动宽带数据业务。 5G关键能力比以前
16、几代移动通信更加丰富,用户体验速率、 连接数密度、端到端时延、峰值速率和移动性等都将成为5G的关 键性能指标。然而,与以往只强调峰值速率的情况不同,业界普 遍认为用户体验速率是5G最重要的性能指标,它真正体现了用户 可获得的真实数据速率,也是与用户感受最密切的性能指标。基 于5G主要场景的技术需求,5G用户体验速率应达到Gbps量级。 面对多样化场景的极端差异化性能需求,5G很难像以往一 样以某种单一技术为基础形成针对所有场景的解决方案。此外, 当前无线技术创新也呈现多元化发展趋势,除了新型多址技术之 外,大规模天线阵列、超密集组网、全频谱接入、新型网络架构 等也被认为是5G主要技术方向,均能
17、够在5G主要技术场景中发 挥关键作用。 IMT-2020(5G)推进组 5G概念白皮书9 IMT-2020(5G)推进组 5G概念白皮书 综合5G关键能力与核心技术,5G概念可由“标志性能力指 标”和“一组关键技术”来共同定义。其中,标志性能力指标为 “Gbps用户体验速率”,一组关键技术包括大规模天线阵列、超 密集组网、新型多址、全频谱接入和新型网络架构。5G概念10 从技术特征、标准演进和产业发展角度分析,5G存在新空口 和4G演进空口两条技术路线。 新空口路线主要面向新场景和新频段进行全新的空口设计, 不考虑与4G框架的兼容,通过新的技术方案设计和引入创新技术 来满足4G演进路线无法满足
18、的业务需求及挑战, 特别是各种物联 网场景及高频段需求。 4G演进路线通过在现有4G框架基础上引入增强型新技术, 在保证兼容性的同时实现现有系统性能的进一步提升,在一定程 度上满足5G场景与业务需求。 此外,无线局域网(WLAN)已成为移动通信的重要补充, 主要在热点地区提供数据分流。下一代WLAN标准(802.11ax) 制定工作已经于2014年初启动,预计将于2019年完成。面向2020年 及未来,下一代WLAN将与5G深度融合,共同为用户提供服务。 当前,制定全球统一的5G标准已成为业界共同的呼声,国 际电信联盟(ITU)已启动了面向5G标准的研究工作,并明确了 IMT-2020(5G)
19、工作计划:2015年中将完成IMT-2020国际标准前 期研究,2016年将开展5G技术性能需求和评估方法研究,2017年 底启动5G候选方案征集,2020年底完成标准制定。 5G 5G 技术路线 技术路线 IMT-2020(5G)推进组 5G概念白皮书11 IMT-2020(5G)推进组 5G概念白皮书 5G时间工作计划 3GPP作为国际移动通信行业的主要标准组织,将承担5G国 际标准技术内容的制定工作。3GPP R14阶段被认为是启动5G标 准研究的最佳时机,R15阶段可启动5G标准工作项目,R16及以 后将对5G标准进行完善增强。办公室 12 面向2020年及未来的移动互联网和物联网业务
20、需求,5G将重 点支持连续广域覆盖、热点高容量、低功耗大连接和低时延高可 靠等四个主要技术场景,将采用大规模天线阵列、超密集组网、 新型多址、全频谱接入和新型网络架构等核心技术,通过新空口 和4G演进两条技术路线,实现Gbps用户体验速率,并保证在多 种场景下的一致性服务。 IMT-2020(5G)推进组愿与全球5G相关组织、企业、科研机 构和高校加强合作,共同定义5G概念及技术路线,合力推动全球 统一的5G标准及产业发展。 总结及展望 IMT-2020(5G)推进组 5G概念白皮书13 IMT-2020(5G)推进组 5G概念白皮书缩写 3GPP 5G CDMA D2D FBMC FDMA
21、F-OFDM ITU LDPC MIMO MUSA NOMA OFDM OFDMA PDMA SCMA TDMA WLAN 缩略语 英文全称 Third Generation Partnership Project The Fifth Generation Mobile Communication System Code Division Multiple Access Device-to-Device Filter Bank MultiCarrier Frequency Division Multiple Access Filtered-Orthogonal Frequency Multip
22、lexing International Telecommunication Union Low Density Parity Check Multiple-Input Multiple-Output Multi-User Shared Access Non-Orthogonal Multiple Access Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiple Access Pattern Division Multiple Access Sparse Code Multiple Access Time Division Multiple Access Wireless Local Area Network中文全称 第三代合作伙伴计划 第五代移动通信系统 码分多址 终端直通 滤波器组多载波 频分多址 基于滤波的正交频分复用 国际电信联盟 低密度奇偶检验 多输入多输出 多用户共享接入 非正交多址 正交频分复用 正交频分多址 图样分割多址 稀疏码分多址 时分多址 无线局域网14 IMT-2020(5G)推进组 5G概念白皮书 主要贡献单位