1、1菱形的性质与判定教学目标1理解菱形的判别条件及其证明,并能利用这两个定理解决一些简单的问题。2经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展 抽象思维;经历实际操作,探索菱形判定定理的证明过程,发展合情推理能力和初步的演 绎推 理的能力重点 菱形判定定理的证明.;菱形判定定理的应用.难点 学生独立 完成证明的过程,增强学生对待科学的严谨治学态度教学用具 三角板、圆规教学环节 说 明 二次备课复习 练习复习上节课探究过的菱形的性质新课导入活动内容:制作菱形在一张纸上用尺规作图做出边长为 10cm 的菱形;想办法用一张长方形纸剪折出一个菱形.利用长方形纸你还能想到哪些制
2、作菱形的方法.课 程 讲 授一、展示交流,引导探究.活动内容: 利用实物投影或者课件,请学生说明自己制作的菱形的过程,教师从中抓住“对角线垂直的平行四边形是菱形” 、 “四条边相等的四边形是菱形(菱形的尺规作图)”和“利用长方形纸剪折菱形 ”等的实例资源,引导学生认识到理论证 明的必要性,并引导学生思考菱形的判定与菱形的性质之间的关系。用实物投影、课件、板书等方式罗列发现的学生资源:对角线垂直的平行四边形是棱形四条边相等的四边形是菱形请学生交流大体思路菱形的尺规作图利用长方形纸剪折菱形二、教师引导,独立证明活动内容:组织学生以小组合作的方式独立完成“对角线 垂直的平行四边形是菱形”和“四条边相
3、等的四边形是菱形”两个判定定理的证明,并进行全班交流。(一)对角线垂直的平行四边形是菱形已知:如图 1-3,在ABCD 中,对角线 AC 与 BD 交于点 O,ACBD.求证: ABCD 是菱形证明:四 边形 ABCD 是平行四边形OA=OC 又ACBD BD 是线段 AC 的垂直平分线BA=BC 2FEO DB CA四边形 ABCD 是菱形(菱形定义) (二)四条边相等的四边形是菱形已知:如图 1-5,四边形 ABCD 中,AB=BC=CD=DA.求证: 四边形 ABCD 是菱形证明:AB=CD,AD=BC 四边形 ABCD 是平行四边形又AB=BC 四边形 ABCD 是菱形(菱形定义) 三、实际应用,练习巩固活动内容:小组合作完成教材中的两个习题1.教材 P7 随堂练习画一个菱形,使它的两条对角线长分别是 4cm、6cm.2.教材 P8 知识技能 1已知:如图,在ABCD 中,对角线 AC 的垂直平分线分别与 AD、AC、BC 相较于点 E、O、F.求证: 四边形 AECF 是菱形小结学生互相交流菱形的性质与判定定理,何时该选用性质定理,何时选择判定定理,菱形与平行四边形的关系,遇到菱形实际题目时如何分析思路,以及遇到困难时如何克服等。作业布置 教材 P8 知识技能 2、3板书设计课后反思