收藏 分享(赏)

运筹十-库存理论.ppt

上传人:无敌 文档编号:32057 上传时间:2018-03-05 格式:PPT 页数:28 大小:929KB
下载 相关 举报
运筹十-库存理论.ppt_第1页
第1页 / 共28页
运筹十-库存理论.ppt_第2页
第2页 / 共28页
运筹十-库存理论.ppt_第3页
第3页 / 共28页
运筹十-库存理论.ppt_第4页
第4页 / 共28页
运筹十-库存理论.ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、1,第十章 存储理论,平抑波动,保障供给,2,存储理论 (Inventory Theory),与排队现象一样,存储是一种常见的社会和日常现象平抑波动,保障供给两方面的矛盾:短缺造成的损失和存储形成的费用起源于物资管理和生产过程控制经典存储理论和现代物流管理经典研究最佳订货周期和订货量现代研究如何将存储降至最低,减少和优化物流环节,如 JIT,MRPII,Supply Chain现代物流管理的原因产品个性化、地皮价格暴涨、专业化生产、信息系统、商业信誉本章只介绍经典存储理论的基础,3,10.1 存储系统、费用和管理,存储过程通常包括三个环节:订购进货、存储和供给需求存储系统的中心可视为仓库,如下

2、图对存储系统而言,外部需求一般是不可控的因素,但可以预测;总体上需求可分为确定型的和随机型的但订购时间和订购量一般是可控的因素。问题是:什么时间订货,一次订多少?,备运期:从订购单发出到物资运到入库这段时间备运期可能是确定型的,也可能是随机型的几种相关的费用订购费:包括联系、质检、运输、入库等与订购数量无关的一次性费用物资单价:是否与时间有关?是否与批量有关?,4,存储费:包括保管费、仓库占用费、流动资金利息、存储损耗费等,与时间和数量成正比缺货损失费:两种形式,停产形成的真正损失;商店断货形成的机会损失存储策略:确定订货的间隔时间和订购量定期补充法:以固定的时间间隔订货,每次订货要把储量恢复

3、到某种水平。简单但容易造成缺货或积压定点补充法:当存货量下降到某点就订货,每次的订货量可以是固定的。称为(s, S)策略,s 代表订货点,S 代表最大储量,因此订货量为 Q=Ss。要监视订货点分类管理法:按照占用流动资金的多少或总的存储费的大小将存储物资分为三类,如下表所示。第一类是管理重点,第二类适当控制,第三类大体估算,可多存一些以免缺货,5,10.2 确定型存储模型,备运期和需求量都是确定性的称为确定型模型,若其中有一 个是随机的,则称为随机型模型。本节只介绍确定型模型 10.2.1 不允许缺货模型模型假设单位时间的需求量为常数 D (称为需求率)备运期为 0;不允许缺货;各种参数均为常

4、数设订货量为 Q,订货周期为 t,需求率为 D一次订购费为 Cd,单位物资单位时间的存储费为 Cs定性分析每次订购量小,则存储费用少,但订购次数频繁,增加订购费;每次订购量大,则存储费用大,但订购次数减少,减少订购费;因此有一个最佳的订货量和订货周期定量分析每次订购量 Q=Dt(1)平均储量 = 0.5Q,6,不允许缺货模型的推导,可比性原则单位相同,时间相同;目标函数的含义相同由于系统存量具有周期性,因此只需研究一个周期Q 不同,周期长度 t 也不同,因此目标函数应为单位时间内的总费用,单位时间内总费用是订货量 Q 的非线性函数,7,不允许缺货模型的推导,由 C(Q) 曲线可见 Q0 点使单

5、位时间总费用最小,称为经济订货量 (Economic Order Quantity, E.O.Q)根据 (2)式求经济订货量 Q0,对 C(Q) 求导,8,不允许缺货模型的几点说明,1、没有考虑物资单价若物资单价与时间和订购量无关,为常数 k,则单位时间内的物资消耗费用为,2、若备运期不为零,(3)(4)(5)式仍成立设备运期 L 为常数,则可得订货点 s=LD,Q0 和 t0 都不变,3、灵敏度分析设实际订购量 Q=rQ0,r 为一比例常数,9,则实际订购量的平均总费用为,当 r 由 0.5 增大到 2 时,当 r=1.1 比值仅为 1.0045,可见灵敏度很低,10,例1 某工厂生产载波机

6、需电容元件,正常生产每日需600个,每个存储费 Cs =0.01 元/周,订购费每次为 Cd =50 元,问:(1)经济订货量为多少?(2)一年订购几次?(一年按 52 周计),(3) 一年的存储费和订购费各是多少?解: 以周为时间单位,每周按 5 天计,则 D=5600=3000个/周(1)由(3)式得,11,10.2.2 允许缺货模型,允许缺货,但到货后补足缺货,故仍有 Q=DtQ 为订货量,q 为最大缺货量;t 是订货周期,t1 是不缺货期, t2 是缺货期;最大存储量为 H=QqCq 为单位缺货损失费,其它费用参数符号同不允许缺货模型,12,故单位时间平均总费用为,将 q 代入(7)式

7、,得,先对 C(Q, q) 对 q 求偏导,并令导数为 0,13,由于 Cq / (Cs+Cq)1,故允许缺货是有利的拆借现象,商店中的期货Cq ,退化为不允许缺货模型,14,例:某公司经理一贯采用不允许缺货的经济批量公式确定订货批量,因为他认为缺货虽然随后补上总不是一件好事。但由于激烈竞争迫使他不得不考虑采用允许缺货的策略。已知对该公司所售产品的需求为 200件/季度,每次的订货费用为150元,存储费为 3元/件.年,发生缺货的损失费为 5元/件.季度,试分析:(a)计算采用允许缺货策略较之不允许缺货策略每年节省的费用;(b)该公司为保持一定信誉,规定缺货量不得超过订货总量的15%,且任何一

8、名顾客等待补货的时间不超过 3周,问允许缺货的最优策略能否满足要求?解:D=800件/年,Cd150元,CS3元/件.年, Cq20元/件.年。(a) 不允许缺货策略 Q0=283件,C(Q0)=848.53; Cq/Cq+CS1/2 =0.9325;允许缺货策略 Q0=303件,C(Q0)=791.25;(b) CS/Cq+CS =0.13043;最大缺货量 q040件,故缺货比例为 40/303=13.2%;最长缺货等待时间为 t2q0 /D=40/800(年) =18.25天D ;Q =K t1为生产期总产量; t2 为转产期,t = t1 + t2 为生产周期, H 最大存储量Cd 这

9、里称为准备费,16,故单位时间平均总费用为,KD,C(Q0)0, Q0 (长期合同)正是 JIT 无仓储生产的道理K,退化为不允许缺货模型,直接应用不允许缺货模型的公式(3),得,17,10.2.4 两种存储费,不允许缺货模型,自有仓库容量不够,需要租用仓库t1 租用仓库存储时间;t2 自有仓库存储时间,t = t1 + t2 =Q/D 为订货周期W 为自有仓库容量 Cr 为租用仓库存储费率,且 Cr Cs ,所以先用租用仓库,18,故单位时间平均总费用为,Cr,Q0wWCr=Cs 时,退化为不允许缺货模型,对(15)式导,解极值点,19,10.2.5 不允许缺货,批量折扣模型,物资单价与购买

10、批量有关。设共有 n 个批量等级,等级越高,批量越大,单价越低令 Kj 代表第 j 级的批量单价;Mj 代表该批量的最小一次订购量,即一次订购量 在区间 Mj , Mj+1) 内,享有单价 Kj 其它条件都同不允许缺货模型因此,批量折扣模型的单位时间平均总费用为,公式(18)只适用Mj , Mj+1) 红线描出的一段,20,批量折扣模型最经济订货量的计算步骤,1、先用公式(3)求 Q0,若 Q0 落入 Mn , ) ,则 Qm= Q0;若落在 Mi , Mi+1)内,则2、计算 Cj(Mj), j=i+1, ., n3、求 C(Qm)=minCi(Q0), Cj(Mj),ji,例2 某工厂每月

11、需要某种零件 2000件,已知每件每月存储费为 0.1 元,一次订购费为 100元。一次订购量与零件单价关系如下:,21,解:(1)不考虑单价,计算经济订货量,22,10.3 多阶段存储模型,是一种动态规划可以用网路图来表示用最短路解法,10.4 随机型存储模型,10.4.1 报童问题在合同期,邮局每日定量向“报童”供应报纸,但购买报纸的顾客是随机的。报纸当日出售,一份可得纯收入 a 角钱,若过期销售,每份亏损 b 角钱。如何确定日进货量使合同期收入最大?(忽略订购费)供大于求:折价处理的损失相当存储费 b供小于求:机会损失,相当缺货损失费 a由于需求是随机的,因此应使总的期望损失最小,23,

12、设 Q 为每日定货量,常数;x 为每日需求量,随机变量x 为离散随机变量,P(x) 为分布函数则每日损失 C(Q) 为,当 Q0 为最优值时,应满足下两式,24,将(4),(1)式代入(2)式,解不等式,可得,故 Q0 满足下式时,总期望损失 EC(Q0) 最小,将(5),(1)式代入(3)式,解不等式,可得,a/(a+b) 称为临界比。P(x)已知,通过求累积概率可得 Q0,25,例2 设报纸零售商出售一份报纸的净收入为 a=1角,售不出去时,每份亏损 b=3角,已知需求量 x 的概率分布如表,求:(1)零售商应订多少份报纸才能使纯收入期望值最高?纯收入期望值是多少?(2)当 a=b=2角时

13、,应订多少?纯收入期望值为多少?(3)只订 30份,纯收入期望值为多少?,解:(1) a/(a+b)=0.25,查表可知 Q=32。期望净收入为,(2) a/(a+b)=0.5,查表可知 Q=34。同理期望净收入为64.24角(3)显然期望净收入为 230=60角,26,10.4.2 随机需求存储模型 II 缓冲储备量,s 为订货点,备运期 t2 为常数,备运期内总需求为随机变量 y 已知 y 的概率分布 P(y),有备运期 总需求的期望值,备运期内不缺货的概率为,备运期内缺货的概率为 1R若给定 R 很高,则订货点 s 提高,当 sE(y),就出现了缓冲储备量 B, 有 B = s E(y)

14、,即订货点 s = B +E(y)单位时间缓冲物资的存储费为 Cs(B) = Cs B每周期的平均缺货量为,27,例10.4.3 随机需求存储模型 II 缓冲储备量,某单位经常使用汽油,采用定点订购策略。已知采购汽油的备运期 L=1 个月,在备运期中,需求量 y 近似正态分布,其平均需求量 Ey=50公斤/月,标准差 y =10,存储费 Cs=0.5元/月公斤,当不缺货概率分别为 80%, 90%, 95%, 98% 时,试求:(1) 订货点 s ;(2) 缓冲储备量 B; (3) 缓冲物资存储费。解:在数学用表中,一般只给出标准正态分布 N(0,1) 的积分值,,给定 R ,通过查标准正态分

15、布表可得上百分位 z,由此可得订货点 s = y = zy +Ey,28,例10.4.3 随机需求存储模型 II 缓冲储备量,(1) R=0.8 时,查得 z=0.84, 订货点 s = zy +Ey=0.8410+50=58.4公斤(2) 缓冲储备量 B = s Ey=8.4公斤(3) 缓冲物资存储费C(B)=CsB=0.5 8.4=4.2元/月标准正态分布表 Z (Z) Z (Z) Z (Z)0.000.5000000.950.8289441.700.9554340.500.6914631.000.8413451.800.9640700.600.7257471.100.8643341.900.9712830.700.7580361.200.8849302.000.9772500.750.7733731.300.9032002.250.9877760.800.7881451.400.9192432.500.9937900.850.8023381.500.9331932.750.9970200.900.8159401.600.9452013.000.998650,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报