1、1本试卷分为第卷(选择题)和第(非选择题)两部分,共 150 分,考试用时 120 分钟。第卷 1 至 3 页,第卷 4 至 6 页。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第 I 卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共 8 小题,每小题 5 分,共 40 分参考公式:如果事件 A,B 互斥,那么 如果事件 A,B 相互独立,P(AB)=P(A)+
2、P(B) P(AB)=P(A) P(B)柱体的体积公式 V 柱体=Sh, 圆锥的体积公式 V = Sh 31其中 S 表示柱体的底面积其中 其中 S 表示锥体的底面积,h 表示圆锥的高h 表示棱柱的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1 )已知集合 则 =( )1,234,|32,AByxA, B(A) (B) (C) (D)11,4【答案】D【解析】试题分析: 选 D.1,470,AB,4B2考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合
3、交集的考查立足于元素互异性,做到不重不漏.(2 )设变量 x,y 满足约束条件 则目标函数 的最小值为( )20,369.xy25zxy(A) (B)6 (C)10 (D)174【答案】B考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.(3 )在ABC 中,若 ,BC=3, ,则 AC= ( )=13AB120C(A)1 (B)2 (C)3 (D) 4【答案】A【解析】试题分析:由余弦定理得 ,选
4、 A.213931A考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解2利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的(4 )阅读右边的程序框图,运行相应的程序,则输出 S 的值为( )(A)2 (B)4 (C)6 (D) 83【答案】B【解析】试题分析:依次循环: 结束循环,输出 ,选 B.8,n2;S,3;4,nS4考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循
5、环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.(5 )设a n是首项为正数的等比数列,公比为 q,则“ q0) ,以原点为圆心,双曲线的实半轴长为半径长的圆与双24=1xy曲线的两条渐近线相交于 A、 B、 C、 D 四点,四边形的 ABCD 的面积为 2b,则双曲线的方程为( )(A) (B) (C) (D)243=1yx234=1yx24=1xyb24=1xy【答案】D考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件, “定位”是指确定焦点在哪条坐标轴上, “定量”是
6、指确定 a, b 的值,常用待定系数法(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论若双曲线的焦点不能确定时,可设其方程为 Ax2 By21( AB0)若已知渐近线方程为 mx ny0,则双曲线方程可设为 m2x2 n2y2 ( 0)(7)已知 ABC 是边长为 1 的等边三角形,点 分别是边 的中点,连接 并ED,BCA,DE延长到点 ,使得 ,则 的值为( )FEFD2BCA(A) (B) (C) (D)8584181【答案】B【解析】5试题分析:设 , , , ,BAaCb1()2DEACba3()24DFEba,1353()244FDa,故选 B.58C考
7、点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言“坐标语言” ,实质是“形”化为“数” 向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来(8)已知函数 f( x)= ( a0,且 a1)在 R 上单调递减,且关2(4,0log1)3ax于 x 的方程 恰好有两个不相等的实数解,则 a 的取值范围是( )|()|f(A) (0, (B) , (C) , (D) , ) 2334324
8、1324【答案】C【解析】试题分析:由 在 上递减可知 ,由方程()fxR340131,4aa恰好有两个不相等的实数解,可知 , ,又|()|2fx2,23时,抛物线 与直线 相切,也符合题意,实数 的34a2(43)yxaxyxa去范围是 ,故选 C.1,考点:函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解6第卷注意事项:1、用黑色墨水的
9、钢笔或签字笔将答案写在答题卡上.2、本卷共 12 小题,共计 110 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.(9)已知 , i 是虚数单位,若 ,则 的值为_.,abR(1)iba【答案】2【解析】试题分析: ,则 ,所以 , ,故答(1)1()ibbia10ba21ba案为 2考点:复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()(),(.),abicdabdciabdR. 其次要熟悉复数相关基本概念,如复数2,.,cii的实部为 、虚部为 、模为 、共轭为(,)abRab2
10、ab.abi(10) 的展开式中 x2的系数为_.(用数字作答)281x【答案】 56考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n, r 均为非负整数,且 n r);第二步是根据所求的指数,再求所求解的项2有理项是字母指数为整数的项解此类问题必须合并通项公式中同一字母的指数,根据7具体要求,令其为整数,再根据数的整除性来求解(11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m) ,则该四棱锥的体积为_m 3.【答案】2【解析】试题
11、分析:由三视图知四棱锥高为 3,底面平行四边形的底为 2,高为 1,因此体积为故答案为 21(2)3V考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图2三视图中“正侧一样高、正俯一样长、俯侧一样宽” ,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据(12)如图, AB 是圆的直径,弦 CD 与 AB 相交于点 E, BE=2AE=2, BD=ED,则线段 CE 的长为_.【答案】 238【解析】试题分析:设 ,则由相交弦定理得 , ,又CExDECAB2DEx,所以 ,因为 是直径,则 ,2BD1A
12、31,在圆中 ,则 ,即 ,解得249AxB:AE249x3考点:相交弦定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形比例式等积式” 在证明中有时还要借助中间比来代换,解题时应灵活把握2应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等(13)已知 f(x)是定义在 R 上的偶函数,且在区间(- ,0)上单调递增.若实数 a 满足,则 a 的取值范围是_.122)a【答案】 3(,
13、)考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效(2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化9(14) 设抛物线 , ( t 为参数, p0)的焦点为 F,准线为 l.过抛物线上一点 A 作2xpyl 的垂线,垂足为 B.设 C( p,0) , AF 与 BC 相交于点 E.若| CF|=2|AF|,且 ACE 的面7积为 ,则 p 的值
14、为_.32【答案】 6【解析】试题分析:抛物线的普通方程为 , , ,又2ypx(,0)2F732pC,则 ,由抛物线的定义得 ,所以 ,则2CFA3F3ABAx,由 得 ,即 ,所以 ,|yp/BECA 62CEFAS,所以 , 92ACFECFSS1329p6p考点:抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理2若 P(x0, y0)为抛物线 y22 px(p0)上一点,由定义易得| PF| x0 ;若过焦点的弦 ABp2的端点坐标为 A(x1, y1), B(x2, y2),则弦长为| AB| x1 x2 p, x1 x2可由根与系数的关系整
15、体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到三、解答题:本大题共 6 小题,共 80 分.(15)已知函数 f(x)=4tanxsin( )cos( )- .2x3()求 f(x)的定义域与最小正周期;()讨论 f(x)在区间 上的单调性.,4【答案】 () , ()在区间 上单调递增, 在区间,2xkZ.124上单调递减.41,【解析】试题分析:()先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基10本三角函数: ,再根据正弦函数性质求定义域、周期 根据(1)的()=2sin3fx结论,研究三角函数在区间 上单调性,4试题解析: 解: 的定义
16、域为 .fx,2xkZ4tancos34sinco3fx x213=sii2isi2x.in-cossin3co=in3x x所以, 的最小正周期f .2T解:令 函数 的单调递增区间是2,3zxsinyz2,.kkZ由 ,得2kk5,.11kxZ设 ,易知 ., ,42ABx ,124AB所以, 当 时, 在区间 上单调递增 , 在区间 上单xf,14,调递减.考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差
17、公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为yAsin(x)k 的形式,再利用三角函数的性质求解三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式(16) (本小题满分 13 分)11某小组共 10 人,利用假期参加义工活动,已知参加义工活动次数为 1,2,3 的人数分别为 3,3,4,.现从这 10 人中随机选出 2 人作为该组代表参加座谈会.(I)设 A 为事件“选出的 2 人参加义
18、工活动次数之和为 4”,求事件 A 发生的概率;(II)设 为选出的 2 人参加义工活动次数之差的绝对值,求随机变量 的分布列X X和数学期望. 【答案】 () ()详见解析13试题解析:解: 由已知,有()12340,CPA所以,事件 发生的概率为 .随机变量 的所有可能取值为()X,12.,23410CP5,342107X.342105CP所以,随机变量 分布列为X12P41575415随机变量 的数学期望 .X4021EX考点:概率,概率分布与数学期望12【名师点睛】求均值、方差的方法1已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;2已知随机变量 的均值、方差,
19、求 的线性函数 a b 的均值、方差和标准差,可直接用 的均值、方差的性质求解;3如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解(17) (本小题满分 13 分)如图,正方形 ABCD 的中心为 O,四边形 OBEF 为矩形,平面 OBEF平面 ABCD,点 G为 AB 的中点, AB=BE=2.(I)求证: EG平面 ADF;(II)求二面角 O-EF-C 的正弦值;(III)设 H 为线段 AF 上的点,且 AH= HF,求直线 BH 和平面 CEF 所成角的正弦值.23【答案】 ()详见解析() ()3721.1,0(,1)(,0)(1
20、,),12)(0,)(1,0)ABCDEFG,13(I)证明:依题意, .设 为平面 的法向量,(2,0)1,2ADF1,nxyzADF则 ,即 .不妨设 ,可得 ,又 ,10nFxyzz10,20,12EG可得 ,又因为直线 ,所以 .1EGEGAF平 面 /EAF平 面(II)解:易证, 为平面 的一个法向量.依题意,1,0OAO.设 为平面 的法向量,则 ,即1,0,2FC ,nxyzC20nECF.不妨设 ,可得 .2xyz121,因此有 ,于是 ,所以,二面角226cos, 3OAn 23sin,OA的正弦值为 .OEFC(III)解:由 ,得 .因为 ,所以23AHF25AF1,2
21、A,进而有 ,从而 ,因此24,55 34,H84,5BH.所以,直线 和平面 所成角的正弦值为 .227cos, 1Bn CEF721考点:利用空间向量解决立体几何问题14【名师点睛】1.利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算2利用数量积可解决有关垂直、夹角、长度问题(1)a0, b0, a b ab0;(2)|a| ;a2(3)cos a, b .ab|a|b|(18) 已知 是各项均为正数的等差数列,公差为 ,对任意的 是 和 的n d,bnNa1n等差中项.()设 ,求证: 是等差数列;2*1,nncbNnc()设,求证:2*11,
22、nnkadTb21.nkTd【答案】 ()详见解析()详见解析【解析】试题分析:()先根据等比中项定义得: ,从而21nba,因此根据等差数列定义可证:211211nnnncbad() 对数列不等式证明一般以算代证先利用分组求和化2d简 ,再利用裂项221nnkTb2221341nbb21dn相消法求和 ,易得结论.222111nkkkdd15考点:等差数列、等比中项、分组求和、裂项相消求和【名师点睛】分组转化法求和的常见类型(1)若 an bncn,且 bn, cn为等差或等比数列,可采用分组求和法求 an的前 n 项和(2)通项公式为 anError!的数列,其中数列 bn, cn是等比数
23、列或等差数列,可采用分组求和法求和(19) (本小题满分 14 分)设椭圆 ( )的右焦点为 ,右顶点为 ,已知132yax3aFA,其中 为原点, 为椭圆的离心率.|1FAeOOe()求椭圆的方程;()设过点 的直线 与椭圆交于点 ( 不在 轴上) ,垂直于 的直线与 交于点lBxll,与 轴交于点 ,若 ,且 ,求直线的 斜率的MyHFMOA取值范围.【答案】 () ()2143x),46,(【解析】试题分析:()求椭圆标准方程,只需确定量,由 ,得13|cOFA,再利用 , 可解得 , ()先化简条件:13()cca223acb2c24a16, 即 M 再 OA 中垂线上, , 再利用直
24、线与椭圆位MOA|AO1Mx置关系,联立方程组求 ;利用两直线方程组求 H,最后根据 , 列等量关系解出BFB直线斜率.取值范围试题解析:(1)解:设 ,由 ,即 ,可得(,0)Fc13|cOA13()ca,又 ,所以 ,因此 ,所以椭圆的方程为223ac23ab2c24.14xy(2) ()解:设直线 的斜率为 ( ) ,则直线 的方程为 .设 ,lk0l)2(xky),(Byx由方程组 ,消去 ,整理得 .)2(1342xkyy 0161)34(222x设 ,由方程组 消去 ,解得 .在 中,),(Myx)2(1492xkyky)1(290kxMAO,即 ,化简得 ,即|OAOA 22Mx
25、,解得 或 .1)(290k46kk所以,直线 的斜率的取值范围为 .l ),46,(17考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围(20) (本小题满分 14 分)设函数 , , 其中3()1fxaxbRba,(I)求 的单调区间;(II
26、) 若 存在极值点 ,且 ,其中 ,求证: ;)(xf0x)(01xff01x1023x()设 ,函数 ,求证: 在区间 上的最大值不小于 .0a|)(|gg,4【答案】 ()详见解析()详见解析()详见解析【解析】试题分析:()先求函数的导数: , 再根据导函数零点是否存在情axf2)1(3)况,分类讨论:当 时,有 恒成立,所以 的单调增区间为 .0a(0(f(,)当 时,存在三个单调区间()由题意得 ,计算可得0a 3)1(20x再由 及单调性可得结论()实质研究函数 最大值:00(32)(fxf)(01xff )(xg主要比较 , 的大小即可,分三种情况研究当 时,1,)f3|,|af
27、f 3a,当 时,3203a4,当 时,32111 aa 304.230a18试题解析:()解:由 ,可得 .baxxf3)1( axf2)1(3)下面分两种情况讨论:(1)当 时,有 恒成立,所以 的单调递增区间为0a0)()2f )(f.),((2)当 时,令 ,解得 ,或 .0a0)(xf 31ax31ax当 变化时, , 的变化情况如下表:xff)31,(a)31,(a),31(a)xf 0 0 (单调递增 极大值 单调递减 极小值 单调递增所以 的单调递减区间为 ,单调递增区间为 ,)xf )31,(a )31,(a.),31(a()证明:因为 存在极值点,所以由()知 ,且 ,由题
28、意,得)(xf 0a1x,即 ,01(3) 20axf 3)1(20进而 .baxbxf)0030又 baxax 32)1(38)2(2(3( 0,且 ,由题意及()知,存在唯一实数满足 )00xfa03x,且 ,因此 ,所以 ;)(1fxf1101x()证明:设 在区间 上的最大值为 , 表示 两数的最大值.下xg2,M,may,面分三种情况同理:(1)当 时, ,由()知, 在区间 上单调递减,3a3101a)(xf2,019所以 在区间 上的取值范围为 ,因此)(xf2,0 )0(,2f|1|1max|)(|ma| bfM|)(|,1| bb,所以 .0),(aa 2|1baM(2)当
29、时, ,由()和34 31321 a()知, , ,)1()()0afaf )()2(ff所以 在区间 上的取值范围为 ,因此)(xf2, )31(),(aff|392|,92max|)31(|,)31(ma| babffM |21|,max|)2(|,0max| bafM|)(1|1| bb.4|综上所述,当 时, 在区间 上的最大值不小于 .0a)(xg2,041考点:导数的运算,利用导数研究函数的性质、证明不等式20【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数 f(x)的定义域(定义域优先);(2)求导函数 f( x);(3)在函数 f(x)的定义域内求不等式 f( x)0 或 f( x)0 的解集(4)由 f( x)0( f( x)0)的解集确定函数 f(x)的单调增(减)区间若遇不等式中带有参数时,可分类讨论求得单调区间2由函数 f(x)在( a, b)上的单调性,求参数范围问题,可转化为 f( x)0(或 f( x)0)恒成立问题,要注意“”是否可以取到