1、12009 年大笔经 行测申论 NO.1秘笈行测申论复习要点及注意事项 为什么发此文,为什么我说你会多得几分? 我曾发愿通过公务员笔试之后,把我几个月以来总结的行测和申论的复习要点以及注意事项发布出来。写这篇文章,完全是发自内心地真心地想帮助大家提高分数;事实上,现在的成文比我当初自己总结给自已看的要完善许多。之所以对我自己总结的东西大吹大捧,自卖自夸, 没有其它原因,我一不想出名,二不想赚才智币。主要原因有两:一是我对这些总结的内容较为自信,我个人认为我的部分方法可能前无古人,二是我希望各位能够从中获益,复习得全面,同时讲究解题速度,少走些很多弯路,取得好成绩,这是我发此帖的初衷回报论坛。希
2、望觉得有用的朋友帮顶起来,让更多的朋友能够看到这篇文章,从中获益;我自信你认真看完这篇文章之后,行测、申论至少会多得几分!而对公务员考试来说,几分也许就是致命的。 同时,我写这篇文章还希望带给大家一个思路就是,勤加总结,善于总结。 关于本文优点纵观 QZZN,也许前无古人,思路最新、总结最系统、最全面。 本文特点是句句要点,句句精华。有人说一篇文章一个精华就算多了,但我觉得这篇文章是每一篇都可做精华。文章是我精心总结大量要点、难点、解题方法之作,特点是强调解题思路,新、快、准。 行测部分,对考点大量总结,对容易犯的错误进行提示,对众多考点解题思路进行归纳总结,力求在最短时间拿下最多的题目。其中
3、,个人觉得总结最好的是数字推理题、图形推理题部分,思路新颖,解题方法可能是前无古人的,在保证迅速做这些题目的同时,一般做这些大题,错一题。再如数学运算,这里总结的专题都是我觉得较难又常考的,很多考友没有掌握,而像一些简单的专题,本文未列入其中;演绎推理则侧重总结容易在考试中误解的句子,其实我觉得这部分掌握了,演绎推理可以超过大部分人了;言语理解提供了不传的秘笈;而常识题侧重容易混淆的法律知识和 2009 年觉得出题可能性大的一些时事。文章有很多亮点,这里不一一赘述,等你发掘,相信你会收获不少。 申论部分,第一阶段李永新的申论书籍总结为蓝本,第二阶段加上众多资料的体会总结,最为精华的部分是大量词
4、式、句式、阵式、段落、结尾等总结,同时精选四篇必背范文,以及覆盖大部分社会问题的申论热点总结。申论文章(尤其是申论下半部分) ,我观QZZN,很多是前人没有总结过的,尤其是申论的专用词式、句式、排比阵式等等,相信各位能获得很大的利益。关于本文缺点个人观点,可能不正确;不全面 我说我是最系统,是相对 QZZN 的文章来说的,但是相对市面上的行测,申论书来说,这篇文章是不全面的。这主要是时间的关系(大致行测 40 天+申论 20 天) ,同时文章可能会2有些错误,欢迎指正。这不是套话,复习时光靠我这篇文章是不够的。如数学运算纵使我整理了十数个专题,却仍不全面,因为数算可能会有几十个专题;再如数字推
5、理,不可能面面俱到,关键是自己平时要多加总结。所以你不能期待仅通过这篇文章就能保证通过笔试,还需要买本厚厚的书啃,还需通过 QZZN 加强,还需其它认真、系统的复习。 另外,请注意,文章中我的观点可能是不正确的(包括我自认为正确的观点,尤其是申论,大部分是个人的观点,仅供参考) ,而且并不具普适性、仅具参考价值(本人是省考) ,真的,希望各位能加以分辨。如果因为我可能不适或不正确的观点误导了你们,那真的是罪过了。 公务员考试的大准则 一是,公务员考试感受最深的一句话是, “天道酬勤”,公务员是考出来的、念出来的,付出总会有回报,考公务员,要全身心地投入,各个模块一个个突破,发现错误,善于总结,
6、不断模拟真题,最重要的是要用心认真地去学去念。我是一个脑瓜子极其平凡的人,但请相信,平凡的人如果勤奋,一旦认真是会有好结果的,是不会比聪明的人差的。 二是,要善于总结。不仅是我总结,自己总结更关键,最好用一本子,或者用电脑WORD 随时写下心得总结。有总结,心里才有底,有成就感,复习会更系统,同时一些要点、难点、错题写下来了,以后再复习时就方便了,也不会忘复习了。时间倒不是最大问题,我用 60 天总结了笔试这么多内容,事实上中间很多时间被我浪费了。当然,有时间,你的成绩就更高了。 三是,战战兢兢的态度。我笔试、面试都是一个感觉,战战兢兢,如履薄冰,如临深渊,深怕自己什么地方漏了,什么地方答错了
7、。这样有好处,好处是复习会比较全面,精细,只要临场发挥得正常就 OK 了;坏处也很明显,压力很大。 本文楼层分布(更新较快) 注:帖子各楼层有更新小部分(很少) ,但是附件没有及时更新。楼层说明: 注:全文各楼层整理而成的 WORD 文档已经发布,详见本楼附件。 第一部分数字推理:本楼 第二部分图形推理:13 楼 第三部分演绎推理:33 楼 第四部分数字运算上:38 楼 由于楼层有字数限制,分成三个部分 第五部分数字运算中:39 楼 第六部分数字运算下:40 楼 第七部分言语理解与表达:74 楼 秘笈 第八部分常识判断(适合 2009 年公考考生):123 楼 第九部分申论上.第一阶段复习:李
8、永新版申论要点整理(436 页的书)等: 详见 175 楼 第十部分申论下.第二阶段复习:专用句式、词式、段落总结+必背范文+我的申论念笔+我的看法 185 楼 本文附件说明(包括全文): 行测部分 注:本文行测全部分的 WORD 文档 申论部分 注:本文申论全部分的 WORD 文档 奇迹 300 分逻辑解题十八套路 逻辑推理超级强化推荐 获得高分强化途径,如有时间,请过一遍。另:网上 MBA 逻辑书很多,可搜索并做更系统的复习 3奇妙数学大世界 数学运算超级强化推荐 如果这本书掌握了,你的数字运算就无敌了,国家公考题有很多题在这本书里。 分享一点个人的经验给大家,我的笔试成绩一直都是非常好的
9、,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策) 。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,最多不超过 3 分钟,
10、这样就比别人多出 20 几分钟,这是非常不得了的。QZZN 有个帖子专门介绍速读的,叫做“得速读者得行测” ,我就是看了这个才接触了速读(帖子地址按住键盘 Ctrl 键同时点击鼠标左键点击这里就链接过去了) ,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。另外,速读对思维和材料组织的能力都大有提高,个人觉得,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。 有条件的朋友可以到这里用这个训练的软件
11、训练,大概 30 个小时就能练出快速阅读的能力,这也是我最最想推荐给大家网站,极力的推荐给大家(一样的,按住键盘左下角 Ctrl 键,然后点击鼠标左键) 。大家好好学习吧!祝大家早日上岸!第一部分、数字推理 一、基本要求 熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。 自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400 自然数立方数列:8,1,0,1,8,27,64,125,216,343,512,729,1000 质数数列: 2,3,5,7,11,13,17(注意倒序,如 17,13
12、,11,7,5,3,2) 合数数列: 4,6,8,9,10,12,14.(注意倒序) 二、解题思路: 1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。 相减,是否二级等差。 8,15,24,35, (48) 相除,如商约有规律,则为隐藏等比。 4,7,15,29,59, (59*21)初看相领项的商约为 2,再看 4*2-1=7,7*2+115 42 特殊观察: 项很多,分组。三个一组,两个一组 4,3,1,12,9,3,17,5, (12) 三个一组 19,4,18,3,16,1,17, (2) 2,1
13、,4,0,5,4,7,9,11, (14)两项和为平方数列。 400,200,380,190,350,170,300, (130)两项差为等差数列 隔项,是否有规律 0,12,24,14,120,16(737) 数字从小到大到小,与指数有关 1,32,81,64,25,6,1,1/8 隔项,是否有规律 0,12,24,14,120,16(737) 每个数都两个数以上,考虑拆分相加(相乘)法。 87,57,36,19, (1*9+1) 256,269,286,302, (302+3+0+2) 数跳得大,与次方(不是特别大) ,乘法(跳得很大)有关 1,2,6,42, (422+42) 3,7,1
14、6,107, (16*107-5) 每三项/二项相加,是否有规律。 1,2,5,20,39, (1252039) 21,15,34,30,51, (102-51) C=A2B 及变形(看到前面都是正数,突然一个负数,可以试试) 3,5,4,21, (42-21 ),446 5,6,19,17,344,(-55) -1,0,1,2,9, (93+1) C=A2+B 及变形(数字变化较大) 1,6,7,43, (49+43) 1,2,5,27, (5+272) 分数,通分,使分子/分母相同,或者分子分母之间有联系。/ 也有考虑到等比的可能 2/3,1/3,2/9,1/6, (2/15) 3/1,5
15、/2,7/2,12/5, (18/7)分子分母相减为质数列 1/2,5/4,11/7,19/12,28/19 , (38/30 )分母差为合数列,分子差为质数列。 3,2,7/2,12/5 , (12/1 ) 通分,3,2 变形为 3/1,6/3 ,则各项分子、分母差为质数数列。 64,48,36,27,81/4, (243/16)等比数列。 出现三个连续自然数,则要考虑合数数列变种的可能。 7,9,11,12,13, (12+3) 8,12,16,18,20, (12*2) 突然出现非正常的数,考虑 C 项等于 A 项和 B 项之间加减乘除,或者与常数/数列的变形 2,1,7,23,83,
16、(A*2+B*3)思路是将 C 化为 A 与 B 的变形,再尝试是否正确。 1,3,4,7,11, (18) 8,5,3,2,1,1, (11) 首尾项的关系,出现大小乱现的规律就要考虑。 3,6,4, (18) ,12,24 首尾相乘 10,4,3,5,4, (2)首尾相加 5旁边两项(如 a1,a3)与中间项 (如 a2)的关系 1,4,3,1,4,3, ( 3(4) ) 1/2,1/6,1/3,2,6,3,(1/2) B 项等于 A 项乘一个数后加减一个常数 3,5,9,17, (33) 5,6,8,12,20,(20*24) 如果出现从大排到小的数,可能是 A 项等于 B 项与 C 项
17、之间加减乘除。 157,65,27,11,5,(11-5*2) 一个数反复出现可能是次方关系,也可能是差值关系 1,2,1,2, (7) 差值是 2 级等差 1,0,1,0,7, (2662) 1,0,1,8,9, (41) 除 3 求余题,做题没想法时,试试(亦有除 5 求余) 4,9,1,3,7,6,( C) A.5 B.6. C.7 D.8 (余数是 1,0,1,0,10,1) 3.怪题: 日期型 210029,2100213,2100218,2100224, (2100-3-3) 结绳计数 1212,2122,3211,131221, (311322) 2122 指 1212 有 2
18、个 1,2 个 2. 第二部分、图形推理一 基本思路:看是否相加,相减,求同,留同存异,去同相加,相加再去同,一笔划问题,笔划数,线条数,旋转,黑白相间,轴对称/中心对称,旋转,或者答案只有一个图可能通过旋转转成。视觉推理偏向奇偶项,回到初始位置.注:5 角星不是中心对称二特殊思路:1.有阴影的图形 可能与面积有关,或者阴影在旋转,还有就是黑白相间。第一组,1/2 1/4 1/4 第二组, 1,1/2, (1/2 A)6两个阴影,里面逆时针转,外面顺时针转。2 交点个数 一般都表现在相交露头的交点上 或者一条线段穿过多边形交点数为,3,3 ,3 第二组为 3,3, (3)交点数为,1,1 ,1
19、 第二组为 2,2, (2)但是,露头的交点还有其它情形。此题算 S 形,露头数,1,3,5,7,9,11,(13 B ),15,173. 如果一组图形的每个元素有很多种,则可从以下思路,元素不同种类的个数,或者元素的个数。出现一堆乱七八遭的图形,要考虑此种可能。第一组 2,4,6 种元素,第二组,1,3,(5)7种类,1,2,3 ,4(5)元素个数为 4,4 ,4 4,4, (4)4.包含的块数 / 分割的块数出现一些乱七八遭的图形,或者出现明显的空间数,要考虑此种可能。包含的块数,1,2,3,4,5,(6,B)分割的块数为,3,3 ,3 ,3,3, (3,A)5.特点是,大部分有两种不同元
20、素,每个图形两种类个数各不相同。圆形相当于两个方框,这样,全都是八个方框,选 D6.角个数 只要出现成角度图形都需要注意3,4,5,6,(7)7.直线/曲线出现时,有可能是,线条数。或者,都含曲线,都含直线,答案都不含直线,都不含曲线。8线条数是,3,3 ,3 4,4,48. 当出现英文字母时,有可能是笔划数,有可能是是否直线/曲线问题,又或者是相隔一定数的字母。如, C S U , D B ? A.P B.O C.L D.R分析:C,S,U 都是一笔, D,B,P 都是两笔。分析:B,Q,P 都含直线,曲线。A,V,L 都只含直线。K,M,O D,F,? A.L B.H C,P D.Z分析:
21、K,M 相距 2,O 和 M 距 2,D 和 F 距 2,F 和 H 距 2A,E,I J,N,? A.G B.M C.T D.R分析:A,E,I 是第 1,5,9 个字母, J,N,R 是第 10,14,189.明显的重心问题重心变化,下,中,上 下,中, (上) ,选 C10.图形和汉字同时出现,可能是笔划数笔划数为,1,2 ,3 ,2,(1)出现汉字,可是同包含 爱,仅,叉,圣,?A.天 B.神 C.受 D 门 同包含“又”11.图形有对称轴时,有可能是算数量第一组对称轴数有,3,4 ,无数 都三条以上 第二组,5,4, (3 条以上)912.九宫格的和差关系,可能是考察行与行之间的关系
22、。第一行,等于第二行加第三行。也可能是考察,一行求和后,再考察行与行之间的关系。13. 5,3,0,1,2, (4) 遇到数量是这种类型的,可能是整体定序后是一个等差数列。慎用。析:观察所给出的左边的图形,出方框范围的线条有 3,5,1,2,0,如果再加上 4 就构成了一个公差为 1 的等差数列,选项 C 有 4 个出方框范围的线条,故选 C。14.数字九宫格 这类九宫格一般把中间数化为两数相乘。262*132*(7+82)102*52*(3+64)所求项为 2*(9+2-3)=1615.如果有明显的开口时,要考虑开口数。要注意这种题型越来越多。例:第一组是 D A N 第二组是 L S ?
23、选项:A.W B.C C.R D.Q析:因为第一组开口数 0,1,2 第二组开口数是 1,2,3(A)分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。其实很多人不是真的不会做,90%的人都是时间不够用。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策) 。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右
24、,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计直线线条数 4,5,7 0, 4, 34, 1, ?各行分割空间和 3,2,3 81,3,4 83,4,? 810过,最多不超过 3 分钟,这样就比别人多出 20 几分钟,这是非常不得了的。QZZN 有个帖子专门介绍速读的,叫做“得速读者得行测” ,我就是看了这个才接触了速读(帖子地址按住键盘 Ctrl 键同时点击鼠标左键点击这里就链接过去了) ,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了
25、速读之后,感觉有再多的书都不怕了。另外,速读对思维和材料组织的能力都大有提高,个人觉得,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。 有条件的朋友可以到这里用这个训练的软件训练,大概 30 个小时就能练出快速阅读的能力,这也是我第二个最喜欢的网站,极力的推荐给大家(一样的,按住键盘左下角 Ctrl 键,然后点击鼠标左键) 。大家好好学习吧!祝大家早日上岸!第三部分、判断推理 最关键的地方,看清题目,问的是11不能还是能,加强还是削弱(是否有“除了”这个词) 一最多与最少 概念之间的关系主要可以分为
26、三大类: 一是包含,如“江苏人” 与“ 南京人 ”; 二是交叉,如“江苏人” 与“ 学生 ”; 三是全异,如“江苏人” 与“ 北京人 ”。 全异的人数最多,全包含的人数最少,以下面例子为例。 例 1:房间里有一批人,其中有一个是沈阳人,三个是南方人,两个是广东人,两个是作家,三个是诗人。如果以上介绍涉及到了房间中所有的人,那么,房间里最少可能是几人,最多可能是几人? 析:广东人是南方人,所以三个南方人和两个广东人,其实只有 3 个人。现考虑全异的情况,即沈阳人,南方人,都不是作家和诗人,这样人数会最多。1+3+2+3=9,最多 9 人。现考虑全包含的情况,假设南方人中,3 个全是诗人,有两个是
27、广东人,有两个南方人是作家,已经占 3 个人了;这样沈阳人也是 1 人,即最少有 4 人。 (本题最容易忽略的是,南方人有可能既是作家,又是诗人,最少的就是把少的包在多的中) 例 2:某大学某某寝室中住着若干个学生,其中,1 个哈尔滨人,2 个北方人,1 个是广东人,2 个在法律系,3 个是进修生。因此,该寝室中恰好有 8 人。以下各项关于该寝室的断定是真的,都能加强上述论证,除了 A、题干中的介绍涉及了寝室中所有的人。 B、广东学生在法律系。 C、哈尔滨学生在财经系。 D、进修生都是南方人。 析:本题,哈尔滨人是北方人,则寝室最多的人数是:2+1+2+38 人,因为寝室正好 8 人,所以,北
28、方人,广东人,法律系,进修生,全部是相异的,一旦有交叉,必然造成寝室人数少于 8 人。所以选 B 二应该注意的几句话 1.不可能所有的错误都能避免 不可能所有的错误都能避免,怎么理解? A. 可能有的错误不能避免 B.必然有的错误不能避免。 答案是 B,不可能所有的错误都能避免,说明了至少存在一个例子错误是不能避免的,可能有一个例子,可能有很多个例子,即必然有的错误不能避免。可能有的错误不能避免,只是可能,说明有可能所有的错误都能避免。 2. 12A. 妇女能顶半边天,祥林嫂是妇女,所以,祥林嫂能顶半边天。 此句话推理有误。因为妇女能顶半边天的妇女是全集合概念,与祥林嫂是妇女中的妇女的概念不一
29、至。类似于,孩子都是祖国的花朵,花朵都需要浇水,所以孩子都需要浇水。又,鲁迅的小说不是一天能读完的, 呐喊是鲁迅的小说,所以, 呐喊不是一天能读完的。错误,因为前面小说是相对鲁迅所有小说,集合的概念,后项是非集合概念。 2. B. 对网络聊天者进行了一次调查,得到这些被调查的存不良企图的网络聊天者中,一定存在精神空虚者。 那么能不能得出“存在不良企图网络聊天者中一定有精神空虚者”呢?答案是否定的,因为要得出的结论是全集的概念,而题干只是针对调查者。 2. C. 对近三年刑事犯调查表明,60%都为己记录在案的 350 名惯犯所为。报告同时揭示,严重刑事犯罪案件的作案者半数以上是吸毒者。 那么能不
30、能得出“350 名惯犯中一定有吸毒者”呢?不能。因为 60%是指案件,而半数指的是作案者。假如案件有 1000 个案犯,其中 350 名惯犯做了 600 件案子,其他名案犯才做了 400 件案子,那么如果 650 名全部吸了毒,而 350 全不吸毒,也符合严重刑事犯罪案件的作案者半数以上是吸毒者(65%吸了毒) 。另外一种说法,严重刑事犯罪案件的作案案件半数中一定有案件是 350 名惯犯里的人做的,这个就正确了。 3.或者,或者 要么,要么 或者 A,或者 B 这个关联词表示,可能是 A 成立,可能是 B 成立,可能是 A/B 都成立。 例如,鲁迅或者是文学家,或者是革命家。表示,鲁迅可能是文
31、学家,可能是革命家,可能是文学革命家。 如果是要么,要么,则只有两个可能性,文学家,和革命家。 4.并非某女年轻漂亮/(并非毛泽东既是军事家,又是文学家) 这句话表示,某女可能年轻不漂亮,可能漂亮不年轻,可能即不漂亮也不年轻。 毛泽东可能是军事家不是文学家,可能是文学家但不是军事家,可能既不是军事家也不是文学家。 5.A:我主张小王和小孙至少提拔一人 B:我不同意 B 的意思是,小王和小孙都不提拔。因为如果提拔任何一人,都满足了 A 的话,即同意了A。 6.如果天下雨,那么地上湿。类似的短语(只要,就;如果,那么;一,就) 第一,现在天下雨了,那么地上湿不湿呢?湿 第二,现在天没下雨,地上湿不
32、湿呢?不一定 第三,现在地上湿了,天有没有下雨呢?不一定 第四,现在地上没湿,天有没有下雨呢?没有。 7.只有天下雨,地上才会湿。类似的短语(除非,才;没有,就没有;不,就不) 表示的含义 1.天下雨,地不一定会湿。 2.天不下雨,地一定不会湿。 138.A:所有的同学都是江苏人;B:不同意 B 的意思是,必然有同学不是江苏人,但可以全部都不是江苏人,也可以是有部分同学不是江苏人。 9.发牢骚的人都能够不理睬通货膨胀的影响。 这句话意思是,只要是发牢骚的,就能不理睬通货膨胀的影响。 但,不理睬通货膨胀的影响的人,不一定是发牢骚的人。 10.所有的贪污犯都是昌吉人;所有的贪污犯都不是昌吉人。 第
33、一句话,不能理解为,所有昌吉人都是贪污犯人。但只要是贪污犯,都是昌吉人。 第二句话,可以理解为,所有的昌吉人都不是贪污犯。因为一旦昌吉人是贪污犯,则不是昌吉人,所以昌吉人不可能是贪污犯。即所有昌吉人都不是贪污犯。 11.主板坏了,那么内存条也一定出了故障。 这种假设命题,除非能证明, “主板坏了,那么内存条不一定/没出故障。 ”否则,不能认为主板就一坏了。也就是即使主板确定是好好的,这个命题也是真的。 12.推理方式的正确性 题目给的是:所有的读书人都有熬夜的习惯,张目经常熬夜,所以,张目一定是读书人。 这个命题是不一定准确的。 选项:所有的素数都是自然数,91 是自然数,所以 91 是素数。
34、 这个命题是错误的,因为 91 是复数,由此,题目推理方式不同。 有时的题目是,题干正确,那么也要选正确的。 13.除非谈判马上开始,否则有争议的双方将有一方会违犯停火协议。 谈谈马上开始了,能保证有争议的双方不会有一方违犯停火协议吗?答案是不能。题目意思是说,只有谈判马上开始,有争议的双方才能不会有一方违犯停火协议。只是停火的条件。 14.正确的三段论和错误的三段论 正确的三段论: 所有的聪明人都近视, 有些学生是聪明人, 有些学生近视。 错误的三段论如: 所有的聪明人都近视, 有些学生不聪明, 有些学生不近视。 三充分必要条件万能宝典 AB,表示,A 是 B 成立的充分条件,B 是 A 成
35、立的必要条件。A 能推出 B,B 成立却不一定推出 A 成立。没有 B 就没有 A,不是 B 就决不会有 A,只要 A 成立,B 一定要成立。 14AB,B=C,则 A=C。 1.只有博士,才能当教授。只有通过考试,才能当博士。 不是博士,不能当教授。博士是当教授的必要条件,教授一定是博士,博士不一定是教授。1 式:教授是博士 不通过考试,不能当博士。通过考试是当博士的必要条件,博士一定通过考试,通过考试不一定是博士,可能还要其它条件。 2 式:是博士通过了考试 联合得,教授通过了考试 2.只有住在广江市的人才能够不理睬通货膨胀的影响;如果住在广江市,就得要付税;每一个付税的人都要发牢骚。 根
36、据上述判断,可以推出以下哪项一定是真的? (1)每一个不理睬通货膨胀影响的人都要付税。 (2)不发牢骚的人中没有一个能够不理睬通货膨胀的影响。 (3)每一个发牢骚的人都能够不理睬通货膨胀的影响 析:第一句话,说明,不理睬广江市;第二句,广江付税;第三句,付税发牢骚。则 不理睬 在广江市 付税 发牢骚 由此,(1),可得之。 (2) ,发牢骚是不理睬的必要条件,不发牢骚,就不能不理睬。 (3) ,只有发牢骚,才能不理睬。但发牢骚了,不代表不理睬。 则选(1) (2) 四加强、削弱、和前提 1 审题 要分辨题目是加强还是削弱还是前提,看清题意(有没有“除了”这些字眼) ,不要看到一个选项就自以为是
37、选上,实际上和题目要求相反。 另一个重点是,分清问的是什么?论据,论证,论点 论点是统帅,解决“要证明什么”的问题; 论据是基础,解决“用什么来证明”的问题;论证是达到论点和论据同意的桥梁。 答题时要审好题目,题意是要加强/削弱什么?论据,论证,还是观点。 例: 有一句话, “学雷锋不好!因为雷锋以前就是个贪图小便宜、损人利己的坏人。如果学了雷锋,那么就没时间学习科学知识,就没时间进行自我修养。 ” 其中,学雷锋不好是我的论点,雷锋以前是什么样的人是我的论据。学了雷锋就怎样怎样这一推断过程,算是我的论证。 要反驳削弱,如果你直接咬住“学雷锋不好”这一错误观点,来批驳我,就是驳论点;如果你列举真
38、实的雷锋事迹,来批驳我关于雷锋是什么样的人的论据,就是驳论据;如果你找出我的逻辑错误或者论述过程中的结果错误,来批驳我,就是驳论证。 2.解削弱型 解答此类试题,一般要先弄清楚题干所描述的论点、论据和论证的关系。如果是削弱结论,则从题干所描述的论点的反向思考问题,一般就是找论点的矛盾命题,或是与论点唱反调的命题;如果是削弱论证,则主要从论点和论据之间的逻辑关系方面思考问题;如果是削15弱论据,则从论据的可靠性角度试考问题。 如果题目是不能削弱,则是要找出,和论据/论证/ 论点 不相干的一项或者加强的一项。 五一些题型 1.这种判断甲乙丙是谁的题,从出现过两次的那个人入手。 例:世界田径锦标赛
39、3000 米决赛中,跑在最前面的甲、乙、丙三人中,一个是美国选手,一个是德国选手,一个是肯尼亚选手,比赛结束后得知: (1)甲的成绩比德国选手的成绩好。 (2)肯尼亚选手的成绩比乙的成绩差。 (3)丙称赞肯尼亚选手发挥出色。 则,甲,乙,丙分别是? 析:(2) , (3)中,肯尼亚出现两次,从此切入,肯尼亚不是乙,肯尼亚不是丙,则肯尼亚是甲。又由 1,肯尼亚比德国成绩好,肯尼亚又比乙差,则德国不是乙,是丙。美国是乙。 2定义判断的注意事项 定义判断一定要注意,题目问的是不属于,还是属于。 定义判断一般是判断是否属于“属”,再看是否符合“ 种差” 。 注:逻辑推理可以通过 MBA 逻辑书籍进行超
40、级强化。16第四部分、数学运算上 (注意运算不要算错,看错!越简单的题,越要小心陷阱) 一排列组合问题 1. 能不用排列组合尽量不用。用分步分类,避免错误 2. 分类处理方法,排除法。 例:要从三男两女中安排两人周日值班,至少有一名女职员参加,有(C1/2 *C1/3 +1)种不同的排法? 析:当只有一名女职员参加时,C1/2* C1/3; 当有两名女职员参加时,有 1 种 3特殊位置先排 例:某单位安排五位工作人员在星期一至星期五值班,每人一天且不重复。若甲忆两人都不能安排星期五值班,则不同的排班方法共有(3 * P4/4)析:先安排星期五,后其它。 4. 相同元素的分配(如名额等,每个组至
41、少一个),隔板法。 例:把 12 个小球放到编号不同的 8 个盒子里,每个盒子里至少有一个小球,共有(C7/11)种方法。 析:0 0 0 0 0 0 0 0 0 0 0 0 ,共有 121 个空,用 81 个隔板插入,一种插板方法对应一种分配方案,共有 C7/11 种,即所求。 注意:如果小球也有编号,则不能用隔板法。 5. 相离问题(互不相邻)用插空法 例:7 人排成一排,甲、乙、丙 3 人互不相邻,有多少种排法? 析:| 0 | 0 | 0 | 0 |,分两步。第一步,排其它四个人的位置,四个0 代表其它四个人的位置,有 P4/4 种。第二步,甲乙丙只能分别出现在不同的 | 上,有 P3
42、/5 种,则 P4/4 * P3/5 即所求。 例:在一张节目表中原有 8 个节目,若保持原有的相对顺序不变,再增17加三个节目,求共有多少种安排方法? 析:思路一,用二次插空法。先放置 8 个节目,有 9 个空位,先插一个节目有 9 种方法,现在有 10 个空位,再插一个节目有 10 种方法,现有 11 种空位,再插一种为 11 种方法。则共有方法 9*10*11。 思路二,可以这么考虑,在 11 个节目中把三个节目排定后,剩下的 8个位置就不用排了,因为 8 个位置是固定的。因此共有方法 P3/11 6. 相邻问题用捆绑法 例:7 人排成一排,甲、乙、丙 3 人必须相邻,有多少种排法? 析
43、:把甲、乙、丙看作整体 X。第一步,其它四个元素和 X 元素组成的数列,排列有 P5/5 种;第二步,再排 X 元素,有 P3/3 种。则排法是 P5/5 * P3/3 种。 7. 定序问题用除法 例:有 1、2、3,.,9 九个数字,可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的 5 位数? 析:思路一:19,组成 5 位数有 P5/9。假设后三位元素是(A 和 B 和C,不分次序,ABC 任取)时(其中 BCA),则这三位是排定的。假设B、C、A 这个顺序,五位数有 X 种排法,那么其它的 P3/3-1 个顺序,都有 X 种排法。则 X*(P3/3-1+1)=P5
44、/9,即 X=P5/9 / P3/3 思路二:分步。第一步,选前两位,有 P2/9 种可能性。第二步,选后三位。因为后三位只要数字选定,就只有一种排序,选定方式有 C3/7 种。即后三位有 C3/7 种可能性。则答案为 P2/9 * C3/7 8. 平均分组 例:有 6 本不同的书,分给甲、乙、丙三人,每人两本。有多少种不同的分法?析:分三步,先从 6 本书中取 2 本给一个人,再从剩下的 4 本中取 2 本给另一个人,剩下的 2 本给最后一人,共 C2/6* C2/4 * C2/2 例:有 6 本不同的书,分成三份,每份两本。有多少种不同的分法? 析:分成三份,不区分顺序,是无序的,即方案(
45、AB,CD,EF)和方案(AB,EF,CD)等是一样的。前面的在(C2/6* C2/4 * C2/2)个方案中,每一种分法,其重复的次数有 P3/3 种。则分法有,(C2/6* C2/4 * C2/2) / P3/3 种分法。 二日期问题 1.闰年,2 月是 29 天。平年,28 天。 2.口诀: 平年加 1,闰年加 2;(由平年 365 天/7=52 余 1 得出)。 18例:2002 年 9 月 1 号是星期日 2008 年 9 月 1 号是星期几? 因为从 2002 到 2008 一共有 6 年,其中有 4 个平年,2 个闰年,求星期,则: 4X1+2X2=8,此即在星期日的基础上加 8
46、,即加 1,第二天。 例:2004 年 2 月 28 日是星期六,那么 2008 年 2 月 28 日是星期几? 4+15,即是过 5 天,为星期四。(08 年 2 月 29 日没到) 三集合问题 1.两交集通解公式(有两项) 公式为:满足条件一的个数+满足条件二的个数两者都满足的个数总个数-两者都不满足的个数 其中满足条件一的个数是指 只满足条件一不满足条件二的个数 加上 两条件都满足的个数 公式可以画图得出 例:有 62 名学生,会击剑的有 11 人,会游泳的有 56 人,两种都不会用的有4 人,问两种都会的学生有多少人? 思路一:两种都会+只会击剑不会游泳+只会游泳不会击剑624 设都会
47、的为 T,11T+56-T+T58,求得 T=9 思路二:套公式,11+56T624,求得 T9 例:对某小区 432 户居民调查汽车与摩托车的拥有情况,其中有汽车的共 27户,有摩托车的共 108 户,两种都没有的共 305 户,那么既有汽车又有摩托车的有多少户? 析:套用公式 27+108T=432-305 得 T=8 2.三交集公式(有三项) 例:学校教导处对 100 名同学进行调查,结果有 58 人喜欢看球赛,有 38 人喜欢看戏剧,有 52 人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有 6 人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有 4 人,三种都
48、喜欢的有 12 人,则只喜欢看电影的人有多少人? 19如图, U=喜欢球赛的 + 喜欢戏剧的 + 喜欢电影的 X 表示只喜欢球赛的人; Y 表示只喜欢电影的人; Z 表示只喜欢戏剧的人 T 是三者都喜欢的人。即阴影部分。 a 表示喜欢球赛和电影的人。仅此 2 项。不喜欢戏剧 b 表示喜欢电影和戏剧的人。仅此 2 项。不喜欢球赛 c 表示喜欢球赛和戏剧的人。仅此 2 项。不喜欢电影。 A=X+Y+Z,B=a+b+c,A 是只喜欢一项的人,B 是只喜欢两项的人,T 是喜欢三项的人。 则 U=喜欢球赛的 + 喜欢戏剧的 + 喜欢电影的 = (xacT) + (yabT) + (zbcT) 整理,即
49、A+2B+3T至少喜欢一项的人数人 又:A+B+T人数 再 B+3T 至少喜欢 2 项的人数和 则 原题解如下: A+2*(6+4+c)+3*12=58+38+52 A+(6+4+c)+12=100 求得 c=14 则只喜欢看电影的人=喜欢看电影的人数-只喜欢看电影又喜欢球赛的人-只喜欢看电影又喜欢看戏剧的人-三者都喜欢的人=52-1441222 人 四时钟问题 1.时针与分针 分针每分钟走 1 格,时针每 60 分钟 5 格,则时针每分钟走 1/12 格,每分钟时针比分针少走 11/12 格。 20例:现在是 2 点,什么时候时针与分针第一次重合? 析:2 点时候,时针处在第 10 格位置,分针处于第 0 格,相差 10 格,则需经过 10 / 11/12 分钟的时间。 例:中午 12 点,时针与分针完全重合,那么到下次 12 点时,时针与分针重合多少次? 析:时针与